The Impact of Alcohol on the Gut Microbiota: A literature review
DOI:
https://doi.org/10.12775/JEHS.2025.80.60045Keywords
alcohol, gut microbiota, dysbiosis, probiotics, alcoholic liver disease, gut-brain axisAbstract
Introduction and Purpose
The gut microbiota plays a key role in maintaining the body's homeostasis, influencing metabolic, immunological, and neurological processes. Alcohol consumption, particularly in excessive amounts, disrupts the composition and function of the intestinal microbiota, leading to dysbiosis. This article explores the mechanisms by which alcohol affects the gut microbiota and its consequences for overall health. Additionally, it discusses potential therapeutic strategies aimed at mitigating these negative effects.
State of Knowledge
Chronic alcohol consumption results in a decrease in the number of beneficial bacteria, such as Lactobacillus and Bifidobacterium, while pathogenic microorganisms increase, which weakens the intestinal barrier and increases inflammatory reactions. Alcohol affects the microbiota through cytotoxic mechanisms, changes in intestinal pH, modulation of the immune system and effects on bacterial metabolism and the gut-brain axis. Alcohol-related gut dysbiosis contributes to the development of a number of conditions, including alcoholic liver disease, metabolic disorders, neurodegenerative diseases and increased cancer risk
Conclusion
Understanding the impact of alcohol on the gut microbiota is essential for preventing and managing its negative health consequences. Therapeutic approaches such as probiotic and prebiotic supplementation, a fiber-rich diet, and gut microbiota transplantation may help rebalance the gut microbiota and reduce negative effects of alcohol consumption.
References
[1] S. C. Wang, Y. C. Chen, S. J. Chen, C. H. Lee, and C. M. Cheng, “Alcohol Addiction, Gut Microbiota, and Alcoholism Treatment: A Review,” Int J Mol Sci, vol. 21, no. 17, pp. 1–11, Sep. 2020, doi: 10.3390/IJMS21176413.
[2] A. F. Carvalho, M. Heilig, A. Perez, C. Probst, and J. Rehm, “Alcohol use disorders,” The Lancet, vol. 394, no. 10200, pp. 781–792, Aug. 2019, doi: 10.1016/S0140-6736(19)31775-1
[3] M. Butts, V. L. Sundaram, U. Murughiyan, A. Borthakur, and S. Singh, “The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review,” Nutrients, vol. 15, no. 7, Apr. 2023, doi: 10.3390/NU15071571.
[4] C. H. Kuo, L. L. Wu, H. P. Chen, J. Yu, and C. Y. Wu, “Direct effects of alcohol on gut-epithelial barrier: Unraveling the disruption of physical and chemical barrier of the gut-epithelial barrier that compromises the host-microbiota interface upon alcohol exposure,” J Gastroenterol Hepatol, vol. 39, no. 7, pp. 1247–1255, Jul. 2024, doi: 10.1111/JGH.16539.
[5] Y. Zang, X. Lai, C. Li, D. Ding, Y. Wang, and Y. Zhu, “The Role of Gut Microbiota in Various Neurological and Psychiatric Disorders-An Evidence Mapping Based on Quantified Evidence,” Mediators Inflamm, vol. 2023, 2023, doi: 10.1155/2023/5127157.
[6] W. M. De Vos, H. Tilg, M. Van Hul, and P. D. Cani, “Gut microbiome and health: mechanistic insights,” Gut, vol. 71, no. 5, pp. 1020–1032, May 2022, doi: 10.1136/GUTJNL-2021-326789.
[7] J. Wang, N. Zhu, X. Su, Y. Gao, and R. Yang, “Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis,” Cells, vol. 12, no. 5, Mar. 2023, doi: 10.3390/CELLS12050793.
[8] E. Thursby and N. Juge, “Introduction to the human gut microbiota,” Biochem J, vol. 474, no. 11, pp. 1823–1836, Jun. 2017, doi: 10.1042/BCJ20160510.
[9] K. Pohl, P. Moodley, and A. D. Dhanda, “Alcohol’s Impact on the Gut and Liver,” Nutrients, vol. 13, no. 9, Sep. 2021, doi: 10.3390/NU13093170.
[10] V. B. Dubinkina et al., “Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease,” Microbiome, vol. 5, no. 1, 2017, doi: 10.1186/S40168-017-0359-2.
[11] S. Leclercq, P. Stärkel, N. M. Delzenne, and P. de Timary, “The gut microbiota: A new target in the management of alcohol dependence?,” Alcohol, vol. 74, pp. 105–111, Feb. 2019, doi: 10.1016/J.ALCOHOL.2018.03.005.
[12] A. W. Yan et al., “Enteric dysbiosis associated with a mouse model of alcoholic liver disease,” Hepatology, vol. 53, no. 1, pp. 96–105, Jan. 2011, doi: 10.1002/HEP.24018.
[13] P. A. Engen, S. J. Green, R. M. Voigt, C. B. Forsyth, and A. Keshavarzian, “The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota,” Alcohol Res, vol. 37, no. 2, p. 223, Jun. 2015, Accessed: Mar. 31, 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC4590619/
[14] C. H. Kuo, L. L. Wu, H. P. Chen, J. Yu, and C. Y. Wu, “Direct effects of alcohol on gut-epithelial barrier: Unraveling the disruption of physical and chemical barrier of the gut-epithelial barrier that compromises the host–microbiota interface upon alcohol exposure,” J Gastroenterol Hepatol, vol. 39, no. 7, pp. 1247–1255, Jul. 2024, doi: 10.1111/JGH.16539.
[15] Z. Xu et al., “Chronic alcohol exposure induced gut microbiota dysbiosis and its correlations with neuropsychic behaviors and brain BDNF/Gabra1 changes in mice,” Biofactors, vol. 45, no. 2, pp. 187–199, Mar. 2019, doi: 10.1002/BIOF.1469.
[16] R. Yue, X. Wei, J. Zhao, Z. Zhou, and W. Zhong, “Essential Role of IFN-γ in Regulating Gut Antimicrobial Peptides and Microbiota to Protect Against Alcohol-Induced Bacterial Translocation and Hepatic Inflammation in Mice,” Front Physiol, vol. 11, Jan. 2021, doi: 10.3389/FPHYS.2020.629141.
[17] P. V. Kuprys et al., “Alcohol decreases intestinal ratio of Lactobacillus to Enterobacteriaceae and induces hepatic immune tolerance in a murine model of DSS-colitis,” Gut Microbes, vol. 12, no. 1, pp. 1–16, Nov. 2020, doi: 10.1080/19490976.2020.1838236.
[18] S. Rastogi and A. Singh, “Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses,” Front Pharmacol, vol. 13, p. 1042189, Oct. 2022, doi: 10.3389/FPHAR.2022.1042189/PDF.
[19] E. Dempsey and S. C. Corr, “Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives,” Front Immunol, vol. 13, Apr. 2022, doi: 10.3389/FIMMU.2022.840245.
[20] F. Cristofori, V. N. Dargenio, C. Dargenio, V. L. Miniello, M. Barone, and R. Francavilla, “Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body,” Front Immunol, vol. 12, Feb. 2021, doi: 10.3389/FIMMU.2021.578386.
[21] M. Satti, M. Modesto, A. Endo, T. Kawashima, P. Mattarelli, and M. Arita, “Host-Diet Effect on the Metabolism of Bifidobacterium,” Genes (Basel), vol. 12, no. 4, Apr. 2021, doi: 10.3390/GENES12040609.
[22] L. A. Bolte et al., “Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome,” Gut, vol. 70, no. 7, pp. 1287–1298, Jul. 2021, doi: 10.1136/GUTJNL-2020-322670.
[23] M. O’Connell Motherway et al., “A Bifidobacterial pilus-associated protein promotes colonic epithelial proliferation,” Mol Microbiol, vol. 111, no. 1, pp. 287–301, Jan. 2019, doi: 10.1111/MMI.14155.
[24] Z. Fang et al., “Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis,” Gut Microbes, vol. 14, no. 1, 2022, doi: 10.1080/19490976.2022.2044723.
[25] V. B. Dubinkina et al., “Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease,” Microbiome, vol. 5, no. 1, pp. 1–14, Oct. 2017, doi: 10.1186/S40168-017-0359-2/FIGURES/4.
[26] J. Yuan et al., “Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae,” Cell Metab, vol. 30, no. 4, pp. 675-688.e7, Oct. 2019, doi: 10.1016/J.CMET.2019.08.018/ATTACHMENT/8F608090-C959-4DCF-8C63-AB4D23DF0597/MMC4.PDF.
[27] D. R. Samuelson et al., “Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae,” PLoS Pathog, vol. 13, no. 6, p. e1006426, 2017, doi: 10.1371/JOURNAL.PPAT.1006426.
[28] T. P. T. Pham, M. T. Alou, M. H. Golden, M. Million, and D. Raoult, “Difference between kwashiorkor and marasmus: Comparative meta-analysis of pathogenic characteristics and implications for treatment,” Microb Pathog, vol. 150, Jan. 2021, doi: 10.1016/J.MICPATH.2020.104702.
[29] H. Chu et al., “The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease,” J Hepatol, vol. 72, no. 3, pp. 391–400, Mar. 2020, doi: 10.1016/J.JHEP.2019.09.029.
[30] L. Voland, T. Le Roy, J. Debédat, and K. Clément, “Gut microbiota and vitamin status in persons with obesity: A key interplay,” Obes Rev, vol. 23, no. 2, Feb. 2022, doi: 10.1111/OBR.13377.
[31] C. T. Peterson, D. A. Rodionov, S. N. Peterson, and A. L. Osterman, “B Vitamins and Their Role in Immune Regulation and Cancer,” Nutrients 2020, Vol. 12, Page 3380, vol. 12, no. 11, p. 3380, Nov. 2020, doi: 10.3390/NU12113380.
[32] T. Uebanso, T. Shimohata, K. Mawatari, and A. Takahashi, “Functional Roles of B-Vitamins in the Gut and Gut Microbiome,” Mol Nutr Food Res, vol. 64, no. 18, Sep. 2020, doi: 10.1002/MNFR.202000426.
[33] W. Roth and M. Mohamadzadeh, “Vitamin B12 and gut-brain homeostasis in the pathophysiology of ischemic stroke,” EBioMedicine, vol. 73, Nov. 2021, doi: 10.1016/J.EBIOM.2021.103676.
[34] L. Fan et al., “Gut microbiota bridges dietary nutrients and host immunity,” Sci China Life Sci, vol. 66, no. 11, pp. 2466–2514, Nov. 2023, doi: 10.1007/S11427-023-2346-1.
[35] N. Qamar, D. Castano, C. Patt, T. Chu, J. Cottrell, and S. L. Chang, “Meta-analysis of alcohol induced gut dysbiosis and the resulting behavioral impact,” Behavioural Brain Research, vol. 376, Dec. 2019, doi: 10.1016/j.bbr.2019.112196.
[36] F. Bishehsari et al., “Alcohol and Gut-Derived Inflammation,” Alcohol Res, vol. 38, no. 2, p. 163, 2017, Accessed: Mar. 31, 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC5513683/
[37] E. J. Pone, “Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors,” Methods Mol Biol, vol. 1390, pp. 229–248, Jan. 2016, doi: 10.1007/978-1-4939-3335-8_15.
[38] R. F. Schwabe, E. Seki, and D. A. Brenner, “Toll-like receptor signaling in the liver,” Gastroenterology, vol. 130, no. 6, pp. 1886–1900, 2006, doi: 10.1053/J.GASTRO.2006.01.038.
[39] E. J. Pone, “Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors,” Methods Mol Biol, vol. 1390, pp. 229–248, Jan. 2016, doi: 10.1007/978-1-4939-3335-8_15.
[40] E. Qi et al., “Uncovering the impact of alcohol on internal organs and reproductive health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways,” Animal Model Exp Med, vol. 7, no. 4, pp. 444–459, Aug. 2024, doi: 10.1002/AME2.12436.
[41] F. Ezquer et al., “Innate gut microbiota predisposes to high alcohol consumption,” Addiction biology, vol. 26, no. 4, Jul. 2021, doi: 10.1111/ADB.13018.
[42] S. Leclercq, C. De Saeger, N. Delzenne, P. De Timary, and P. Stärkel, “Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence,” Biol Psychiatry, vol. 76, no. 9, pp. 725–733, 2014, doi: 10.1016/J.BIOPSYCH.2014.02.003.
[43] R. G. Thurman, “II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin,” Am J Physiol, vol. 275, no. 4, 1998, doi: 10.1152/AJPGI.1998.275.4.G605.
[44] Y. S. Roh, B. Zhang, R. Loomba, and E. Seki, “TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration,” Am J Physiol Gastrointest Liver Physiol, vol. 309, no. 1, Jul. 2015, doi: 10.1152/AJPGI.00031.2015.
[45] J. A. Eom et al., “Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease,” Gut Microbes, vol. 15, no. 2, Dec. 2023, doi: 10.1080/19490976.2023.2281014.
[46] J. Person, “Alcohol and the small intestine,” Scand J Gastroenterol, vol. 26, no. 1, pp. 3–15, 1991, doi: 10.3109/00365529108996478.
[47] C. Martino et al., “Acetate reprograms gut microbiota during alcohol consumption,” Nature Communications 2022 13:1, vol. 13, no. 1, pp. 1–11, Aug. 2022, doi: 10.1038/s41467-022-31973-2.
[48] N. Y. Lee and K. T. Suk, “The Role of the Gut Microbiome in Liver Cirrhosis Treatment,” International Journal of Molecular Sciences 2021, Vol. 22, Page 199, vol. 22, no. 1, p. 199, Dec. 2020, doi: 10.3390/IJMS22010199.
[49] H. Tilg, P. D. Cani, and E. A. Mayer, “Gut microbiome and liver diseases,” Gut, vol. 65, no. 12, pp. 2035–2044, Dec. 2016, doi: 10.1136/GUTJNL-2016-312729.
[50] V. B. Dubinkina et al., “Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease,” Microbiome, vol. 5, no. 1, pp. 1–14, Oct. 2017, doi: 10.1186/S40168-017-0359-2/FIGURES/4.
[51] Y. Chen et al., “Characterization of fecal microbial communities in patients with liver cirrhosis,” Hepatology, vol. 54, no. 2, pp. 562–572, Aug. 2011, doi: 10.1002/HEP.24423.
[52] C. O. Iatcu, A. Steen, and M. Covasa, “Gut Microbiota and Complications of Type-2 Diabetes,” Nutrients 2022, Vol. 14, Page 166, vol. 14, no. 1, p. 166, Dec. 2021, doi: 10.3390/NU14010166.
[53] M. A. Pelleymounter et al., “Effects of the obese gene product on body weight regulation in ob/ob mice,” Science, vol. 269, no. 5223, pp. 540–543, 1995, doi: 10.1126/SCIENCE.7624776.
[54] M. W. Schwartz, R. J. Seeley, L. A. Campfield, P. Burn, and D. G. Baskin, “Identification of targets of leptin action in rat hypothalamus,” J Clin Invest, vol. 98, no. 5, pp. 1101–1106, Sep. 1996, doi: 10.1172/JCI118891.
[55] M. Otaka et al., “Effect of alcohol consumption on leptin level in serum, adipose tissue, and gastric mucosa,” Dig Dis Sci, vol. 52, no. 11, pp. 3066–3069, Nov. 2007, doi: 10.1007/S10620-006-9635-X.
[56] C. Chen et al., “Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation,” Gut, vol. 71, no. 11, pp. 2233–2252, 2022, doi: 10.1136/GUTJNL-2021-326269.
[57] M. F. Sun and Y. Q. Shen, “Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease,” Ageing Res Rev, vol. 45, pp. 53–61, Aug. 2018, doi: 10.1016/J.ARR.2018.04.004.
[58] C. Jiang, G. Li, P. Huang, Z. Liu, and B. Zhao, “The Gut Microbiota and Alzheimer’s Disease,” J Alzheimers Dis, vol. 58, no. 1, pp. 1–15, 2017, doi: 10.3233/JAD-161141.
[59] F. Angelucci, K. Cechova, J. Amlerova, and J. Hort, “Antibiotics, gut microbiota, and Alzheimer’s disease,” J Neuroinflammation, vol. 16, no. 1, May 2019, doi: 10.1186/S12974-019-1494-4.
[60] A. Megur, D. Baltriukienė, V. Bukelskienė, and A. Burokas, “The Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame?,” Nutrients, vol. 13, no. 1, pp. 1–24, Jan. 2020, doi: 10.3390/NU13010037.
[61] X. Hu, T. Wang, and F. Jin, “Alzheimer’s disease and gut microbiota,” Science China Life Sciences 2016 59:10, vol. 59, no. 10, pp. 1006–1023, Aug. 2016, doi: 10.1007/S11427-016-5083-9.
[62] G. Vanella, L. Archibugi, S. Stigliano, and G. Capurso, “Alcohol and gastrointestinal cancers,” Curr Opin Gastroenterol, vol. 35, no. 2, pp. 107–113, Mar. 2019, doi: 10.1097/MOG.0000000000000502.
[63] S. Grad, L. Abenavoli, and D. L. Dumitrascu, “The Effect of Alcohol on Gastrointestinal Motility,” Rev Recent Clin Trials, vol. 11, no. 3, pp. 191–195, Aug. 2016, doi: 10.2174/1574887111666160815103251.
[64] V. B. Dubinkina et al., “Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease,” Microbiome, vol. 5, no. 1, pp. 1–14, Oct. 2017, doi: 10.1186/S40168-017-0359-2/FIGURES/4.
[65] Z. Wang, W. Dan, N. Zhang, J. Fang, and Y. Yang, “Colorectal cancer and gut microbiota studies in China,” Gut Microbes, vol. 15, no. 1, 2023, doi: 10.1080/19490976.2023.2236364.
[66] Y.-N. Yu and J.-Y. Fang, “Gut Microbiota and Colorectal Cancer,” Gastrointest Tumors, vol. 2, no. 1, pp. 26–32, 2015, doi: 10.1159/000380892.
[67] Y. Xiao, J. Zhao, H. Zhang, Q. Zhai, and W. Chen, “Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential,” Clinical Nutrition, vol. 39, no. 5, pp. 1315–1323, May 2020, doi: 10.1016/J.CLNU.2019.05.014/ASSET/3E93A56F-9544-40CB-9402-F3A28FD11F12/MAIN.ASSETS/GR3.SML.
[68] K. Pohl, P. Moodley, and A. D. Dhanda, “Alcohol’s Impact on the Gut and Liver,” Nutrients 2021, Vol. 13, Page 3170, vol. 13, no. 9, p. 3170, Sep. 2021, doi: 10.3390/NU13093170.
[69] V. B. Dubinkina et al., “Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease,” Microbiome, vol. 5, no. 1, pp. 1–14, Oct. 2017, doi: 10.1186/S40168-017-0359-2/FIGURES/4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jakub Sikora, Karolina Knychalska, Mikołaj Łabuda, Klaudia Królikowska, Aleksandra Słojewska, Agata Kotkowiak, Teresa Sowińska, Oliwia Mentel, Adrianna Bogucka, Agnieszka Szema

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 85
Number of citations: 0