The Impact of Immune Checkpoint Inhibitors on Fertility Preservation and Pregnancy Outcomes
DOI:
https://doi.org/10.12775/JEHS.2025.81.60024Keywords
Fertility, immune checkpoint inhibitors, ICIsAbstract
Immune checkpoint inhibitors have revolutionized cancer treatment by enhancing anti-tumor immune responses. However, their impact on fertility is an emerging concern, particularly among young patients, including children. This review aims to assess the effects of immune checkpoint inhibitors on reproductive health and fertility preservation strategies. Immune checkpoint inhibitors may cause endocrine-related adverse effects, such as hypophysitis, thyroid dysfunction, and adrenal insufficiency, which can disrupt gonadal function. In women, these therapies may reduce ovarian reserve, impair ovulation, and cause menstrual irregularities. In men, they may contribute to testosterone deficiency and reduced sperm production. Given that immune checkpoint inhibitors are used even in pediatric oncology, early fertility counseling and preservation strategies, such as oocyte and sperm cryopreservation, should be discussed before treatment. Additionally, recent evidence suggests that physical activity may have a protective effect on reproductive health in patients receiving these therapies by regulating hormonal balance and reducing inflammation. Immune checkpoint inhibitor therapy may contribute to pregnancy-related disorders, with reported adverse effects including miscarriage and preterm birth, however some studies document successful pregnancies in women exposed to this treatment. As immune checkpoint inhibitors continue to be widely used, further research is needed to clarify their long-term effects on reproductive health and optimize fertility preservation strategies for affected patients.
References
1. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801. doi:10.1038/s41467-020-17670-y
2. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355. doi:10.1126/science.aar4060
3. Kelly PN. The Cancer Immunotherapy Revolution. Science. 2018;359(6382):1344-1345. doi:10.1126/science.359.6382.1344
4. Duma N, Lambertini M. It Is Time to Talk About Fertility and Immunotherapy. The Oncologist. 2020;25(4):277-278. doi:10.1634/theoncologist.2019-0837
5. Garutti M, Lambertini M, Puglisi F. Checkpoint inhibitors, fertility, pregnancy, and sexual life: a systematic review. ESMO Open. 2021;6(5):100276. doi:10.1016/j.esmoop.2021.100276
6. Ntemou E, Delgouffe E, Goossens E. Immune Checkpoint Inhibitors and Male Fertility: Should Fertility Preservation Options Be Considered before Treatment? Cancers. 2024;16(6):1176. doi:10.3390/cancers16061176
7. Ascierto PA, Del Vecchio M, Mandalá M, et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2020;21(11):1465-1477. doi:10.1016/S1470-2045(20)30494-0
8. Naimi A, Mohammed RN, Raji A, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal CCS. 2022;20(1):44. doi:10.1186/s12964-022-00854-y
9. Aggarwal V, Workman CJ, Vignali DAA. LAG-3 as the third checkpoint inhibitor. Nat Immunol. 2023;24(9):1415-1422. doi:10.1038/s41590-023-01569-z
10. Hossen MM, Ma Y, Yin Z, et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol. 2023;14:1198365. doi:10.3389/fimmu.2023.1198365
11. Saad P, Kasi A. Ipilimumab. In: StatPearls. StatPearls Publishing; 2025. Accessed March 17, 2025. http://www.ncbi.nlm.nih.gov/books/NBK557795/
12. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517-2526. doi:10.1056/NEJMoa1104621
13. Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol. 2017;8:561. doi:10.3389/fphar.2017.00561
14. Lin X, Kang K, Chen P, et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer. 2024;23(1):108. doi:10.1186/s12943-024-02023-w
15. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123-135. doi:10.1056/NEJMoa1504627
16. Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 Signaling. Int J Mol Sci. 2021;22(10):5282. doi:10.3390/ijms22105282
17. Huuhtanen J, Kasanen H, Peltola K, et al. Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma. J Clin Invest. 2023;133(6):e164809. doi:10.1172/JCI164809
18. Wang SJ, Dougan SK, Dougan M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer. 2023;9(7):543-553. doi:10.1016/j.trecan.2023.04.002
19. Özdemir BC. Immune checkpoint inhibitor-related hypogonadism and infertility: a neglected issue in immuno-oncology. J Immunother Cancer. 2021;9(2):e002220. doi:10.1136/jitc-2020-002220
20. Winship AL, Alesi LR, Sant S, et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nat Cancer. 2022;3(8):1-13. doi:10.1038/s43018-022-00413-x
21. Xu PC, Luan Y, Yu SY, Xu J, Coulter DW, Kim SY. Effects of PD-1 blockade on ovarian follicles in a prepubertal female mouse. J Endocrinol. 2021;252(1):15-30. doi:10.1530/JOE-21-0209
22. Caserta S, Cancemi G, Murdaca G, et al. The Effects of Cancer Immunotherapy on Fertility: Focus on Hematological Malignancies. Biomedicines. 2024;12(9):2106. doi:10.3390/biomedicines12092106
23. Lee CL, Martinez E, Malon Gimenez D, Muniz TP, Butler MO, Saibil SD. Female Oncofertility and Immune Checkpoint Blockade in Melanoma: Where Are We Today? Cancers. 2025;17(2):238. doi:10.3390/cancers17020238
24. Jamrasi P, Tazi M, Zulkifli NA, Bae JH, Song W. The potential role of exercise in mitigating fertility toxicity associated with immune checkpoint inhibitors (ICIs) in cancer patients. J Physiol Sci JPS. 2024;74(1):57. doi:10.1186/s12576-024-00950-3
25. Silvestris E, D’Oronzo S, Petracca EA, et al. Fertility Preservation in the Era of Immuno-Oncology: Lights and Shadows. J Pers Med. 2024;14(4):431. doi:10.3390/jpm14040431
26. De La Cruz P, Woodman-Sousa MF, McAdams JN, et al. Immune checkpoint inhibitor treatment does not impair ovarian or endocrine function in a mouse model of triple negative breast cancer. BioRxiv Prepr Serv Biol. Published online August 19, 2024:2024.08.14.607933. doi:10.1101/2024.08.14.607933
27. Helgadottir H, Matikas A, Fernebro J, Frödin JE, Ekman S, Rodriguez-Wallberg KA. Fertility and reproductive concerns related to the new generation of cancer drugs and the clinical implication for young individuals undergoing treatments for solid tumors. Eur J Cancer Oxf Engl 1990. 2024;202:114010. doi:10.1016/j.ejca.2024.114010
28. Lavafian A, Pezeshki PS, Rezaei N. Investigation of the female infertility risk associated with anti-cancer therapy. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2023;25(7):1893-1905. doi:10.1007/s12094-023-03087-8
29. Cosci I, Grande G, Di Nisio A, et al. Cutaneous Melanoma and Hormones: Focus on Sex Differences and the Testis. Int J Mol Sci. 2022;24(1):599. doi:10.3390/ijms24010599
30. Kim AE, Nelson A, Stimpert K, et al. Minding the Bathwater: Fertility and Reproductive Toxicity in the Age of Immuno-Oncology. JCO Oncol Pract. 2022;18(12):815-822. doi:10.1200/OP.22.00469
31. Baarslag MA, Heimovaara JH, Borgers JSW, et al. Severe Immune-Related Enteritis after In Utero Exposure to Pembrolizumab. N Engl J Med. 2023;389(19):1790-1796. doi:10.1056/NEJMoa2308135
32. Yang X, Xue Y, Shao W, et al. Fertility-sparing treatment outcomes using immune checkpoint inhibitors in endometrial cancer patients with Lynch syndrome. J Gynecol Oncol. Published online January 3, 2025. doi:10.3802/jgo.2025.36.e59
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agata Prokopiuk, Adrianna Tabeau, Agnieszka Pawlik, Patryk Dudek, Klaudia Łuczak, Wiktoria Ulicka, Justyna Pięta, Hanna Sitarek, Joanna Prus, Marcel Chudzikowski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 176
Number of citations: 0