The Role of Diet, Physical Activity, and Lifestyle in Alzheimer's Disease Prevention: A Literature Review
DOI:
https://doi.org/10.12775/JEHS.2025.80.60011Keywords
Alzheimer's disease, lifestyle, Mediterranean diet, physical activity, dementiaAbstract
Alzheimer's disease is currently the most common cause of dementia worldwide, primarily affecting older individuals. By impairing cognitive abilities, it significantly diminishes the quality of life of patients. Predictions indicate that its incidence will rise dynamically over the coming years due to population aging. To date, no treatment has been developed that addresses the underlying causes. As a result, increasing attention has been given to identifying factors that could prevent the development of the disease. This paper examines the literature analyzing the impact of lifestyle, diet, and physical activity on the prevention of Alzheimer's disease. Positive lifestyle factors that have been repeatedly analyzed for their preventive value include, among others: a high level of education, engagement in pro-cognitive activities, social bonding, a healthy diet, and physical activity exceeding 150 minutes per week. All of the above have shown correlations with a lower incidence of Alzheimer's disease, although not all researchers are certain about the positive impact of physical activity. Notably, higher education and its associated cognitive reserve theory, as well as the impact of the MIND and Mediterranean diets on inhibiting the inflammatory process, stand out. Currently, loneliness, smoking, obesity, diabetes, and hypertension may account for up to half of Alzheimer's cases. Focusing on a single element influencing the development of Alzheimer's disease is less important than combining multiple factors, such as an appropriate diet, regular physical activity, and social and cognitive engagement while avoiding recognized risk factors. Only this approach may help reduce millions of cases of dementia in the future.
References
Gałązka-Sobotka M., Gierczyński J., Gryglewicz J., Drapała A. The state of Polish neurology and its development directions in the perspective until 2030; Lazarski University in Warsaw; 2021. doi:10.26399/978-83-66723-30-6
What is Alzheimer’s? Alzheimer’s Association. Accessed March 29, 2025. https://www.alz.org/alzheimers-dementia/what-is-alzheimers (Accessed on 30.03.2025)
Gałecki P. Szulc A. Psychiatry. Wrocław: Edra Urban & Partner. 2018;99-115. Polish.
GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105-e125. doi:10.1016/S2468-2667(21)00249-8
Govindaraju T. Alzheimer’s Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities. The Royal Society of Chemistry; 2022;1-34. doi:10.1039/9781839162732
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. doi:10.1016/S0140-6736(20)32205-4
Sengoku R. Aging and Alzheimer's disease pathology. Neuropathology. 2020;40(1):22-29. doi:10.1111/neup.12626
Katzman R, Terry R, DeTeresa R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988;23(2):138-144. doi:10.1002/ana.410230206
Lane CA, Barnes J, Nicholas JM, et al. Associations Between Vascular Risk Across Adulthood and Brain Pathology in Late Life: Evidence From a British Birth Cohort. JAMA Neurol. 2020;77(2):175-183. doi:10.1001/jamaneurol.2019.3774
Gottesman RF, Mosley TH, Knopman DS, et al. Association of intracranial atherosclerotic disease with brain beta-amyloid deposition: secondary analysis of the ARIC study. JAMA Neurol 2019; 77: 350–57, doi:10.1001/jamaneurol.2019.4339
Epperly T, Dunay MA, Boice JL. Alzheimer Disease: Pharmacologic and Nonpharmacologic Therapies for Cognitive and Functional Symptoms. Am Fam Physician. 2017;95(12):771-778.
Wajman JR, Mansur LL, Yassuda MS. Lifestyle Patterns as a Modifiable Risk Factor for Late-life Cognitive Decline: A Narrative Review Regarding Dementia Prevention. Curr Aging Sci. 2018;11(2):90-99. doi:10.2174/1874609811666181003160225
Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343-353. doi:10.1016/S1474-4422(04)00767-7
Rovio S, Spulber G, Nieminen LJ, et al. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging. 2010;31(11):1927-1936. doi:10.1016/j.neurobiolaging.2008.10.007
Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017-3022. doi:10.1073/pnas.1015950108
Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A. 2004;101(9):3316-3321. doi:10.1073/pnas.0400266101
Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239-252. doi:10.1097/PSY.0b013e3181d14633
Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300(9):1027-1037. doi:10.1001/jama.300.9.1027
Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255-2263. doi:10.1016/S0140-6736(15)60461-5
Shah T, Verdile G, Sohrabi H, et al. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl Psychiatry. 2014;4(12):e487. Published 2014 Dec 2. doi:10.1038/tp.2014.122
Kivimäki M, Singh-Manoux A, Pentti J, et al. Physical inactivity, cardiometabolic disease, and risk of dementia: an individual-participant meta-analysis. BMJ. 2019;365:l1495. Published 2019 Apr 17. doi:10.1136/bmj.l1495
Lee J. The Relationship Between Physical Activity and Dementia: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Gerontol Nurs. 2018;44(10):22-29. doi:10.3928/00989134-20180814-01
Kunutsor SK, Laukkanen JA, Kauhanen J, Willeit P. Physical activity may not be associated with long-term risk of dementia and Alzheimer's disease. Eur J Clin Invest. 2021;51(3):e13415. doi:10.1111/eci.13415
Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of Physical Activity on Cognitive Decline, Dementia, and Its Subtypes: Meta-Analysis of Prospective Studies. Biomed Res Int. 2017;2017:9016924. doi:10.1155/2017/9016924
Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA. Relation of cognitive activity to risk of developing Alzheimer disease. Neurology. 2007;69(20):1911-1920. doi:10.1212/01.wnl.0000271087.67782.cb
Bakos J, Srancikova A, Havranek T, Bacova Z. Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast. 2018;2018:4864107. Published 2018 Jul 2. doi:10.1155/2018/4864107
Takahashi J, Yamada D, Nagano W, Saitoh A. The Role of Oxytocin in Alzheimer's Disease and Its Relationship with Social Interaction. Cells. 2023;12(20):2426. Published 2023 Oct 10. doi:10.3390/cells12202426
Sundström A, Adolfsson AN, Nordin M, Adolfsson R. Loneliness Increases the Risk of All-Cause Dementia and Alzheimer's Disease. J Gerontol B Psychol Sci Soc Sci. 2020;75(5):919-926. doi:10.1093/geronb/gbz139
Akhter-Khan SC, Tao Q, Ang TFA, et al. Associations of loneliness with risk of Alzheimer's disease dementia in the Framingham Heart Study. Alzheimers Dement. 2021;17(10):1619-1627. doi:10.1002/alz.12327
Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012;11(11):1006-1012. doi:10.1016/S1474-4422(12)70191-6
Fritsch T, McClendon MJ, Smyth KA, et al. Effects of educational attainment on the clinical expression of Alzheimer's disease: results from a research registry. Am J Alzheimers Dis Other Demen. 2001;16(6):369-376. doi:10.1177/153331750101600606
Liu Y, Julkunen V, Paajanen T, et al. Education increases reserve against Alzheimer's disease--evidence from structural MRI analysis. Neuroradiology. 2012;54(9):929-938. doi:10.1007/s00234-012-1005-0
Soldan A, Pettigrew C, Cai Q, et al. Cognitive reserve and long-term change in cognition in aging and preclinical Alzheimer's disease. Neurobiol Aging. 2017;60:164-172. doi:10.1016/j.neurobiolaging.2017.09.002
Rusmaully J, Dugravot A, Moatti JP, et al. Contribution of cognitive performance and cognitive decline to associations between socioeconomic factors and dementia: A cohort study. PLoS Med. 2017;14(6):e1002334. Published 2017 Jun 26. doi:10.1371/journal.pmed.1002334
Qureshi SU, Kimbrell T, Pyne JM, et al. Greater prevalence and incidence of dementia in older veterans with posttraumatic stress disorder. J Am Geriatr Soc. 2010;58(9):1627-1633. doi:10.1111/j.1532-5415.2010.02977.x
Yaffe K, Vittinghoff E, Lindquist K, et al. Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry. 2010;67(6):608-613. doi:10.1001/archgenpsychiatry.2010.61
Donley GAR, Lönnroos E, Tuomainen TP, Kauhanen J. Association of childhood stress with late-life dementia and Alzheimer's disease: the KIHD study. Eur J Public Health. 2018;28(6):1069-1073. doi:10.1093/eurpub/cky134
Sapolsky RM. Stress and the brain: individual variability and the inverted-U. Nat Neurosci. 2015;18(10):1344-1346. doi:10.1038/nn.4109
Justice NJ, Huang L, Tian JB, et al. Posttraumatic stress disorder-like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci. 2015;35(6):2612-2623. doi:10.1523/JNEUROSCI.3333-14.2015
McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873-904. doi:10.1152/physrev.00041.2006
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation. 2009;6:41. Published 2009 Dec 26. doi:10.1186/1742-2094-6-41
Reitz C, den Heijer T, van Duijn C, Hofman A, Breteler MM. Relation between smoking and risk of dementia and Alzheimer disease: the Rotterdam Study. Neurology. 2007;69(10):998-1005. doi:10.1212/01.wnl.0000271395.29695.9a
McGrattan AM, McGuinness B, McKinley MC, et al. Diet and Inflammation in Cognitive Ageing and Alzheimer's Disease. Curr Nutr Rep. 2019;8(2):53-65. doi:10.1007/s13668-019-0271-4
Radd-Vagenas S, Kouris-Blazos A, Singh MF, Flood VM. Evolution of Mediterranean diets and cuisine: concepts and definitions. Asia Pac J Clin Nutr. 2017;26(5):749-763. doi:10.6133/apjcn.082016.06
Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi:10.1056/NEJMoa1800389
Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344. Published 2008 Sep 11. doi:10.1136/bmj.a1344
Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann Neurol. 2013;74(4):580-591. doi:10.1002/ana.23944
Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318-1325. doi:10.1136/jnnp-2012-304792
Staubo SC, Aakre JA, Vemuri P, et al. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dement. 2017;13(2):168-177. doi:10.1016/j.jalz.2016.06.2359
McGrattan AM, McGuinness B, McKinley MC, et al. Diet and Inflammation in Cognitive Ageing and Alzheimer's Disease. Curr Nutr Rep. 2019;8(2):53-65. doi:10.1007/s13668-019-0271-4
Garcia-Rios A, Ordovas JM, Lopez-Miranda J, Perez-Martinez P. New diet trials and cardiovascular risk. Curr Opin Cardiol. 2018;33(4):423-428. doi:10.1097/HCO.0000000000000523
Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet. 2004;363(9415):1139-1146. doi:10.1016/S0140-6736(04)15900-X
Smith PJ, Blumenthal JA, Babyak MA, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55(6):1331-1338. doi:10.1161/HYPERTENSIONAHA.109.146795
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer's disease. Alzheimers Dement. 2015;11(9):1007-1014. doi:10.1016/j.jalz.2014.11.009
Haghighatdoost F, Feizi A, Esmaillzadeh A, et al. The MIND (Mediterranean-DASH Diet Intervention for Neurodegenerative Delay) and Mediterranean Diets are differently associated with psychosomatic complaints profile in adults: Results from SEPAHAN Cross-sectional study. Mediterranean Journal of Nutrition and Metabolism. 2020;13(4):341-359. doi:10.3233/MNM-200426
Grimm MO, Kuchenbecker J, Grösgen S, et al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem. 2011;286(16):14028-14039. doi:10.1074/jbc.M110.182329
Fiala M, Halder RC, Sagong B, et al. ω-3 Supplementation increases amyloid-β phagocytosis and resolvin D1 in patients with minor cognitive impairment. FASEB J. 2015;29(7):2681-2689. doi:10.1096/fj.14-264218
Hopperton KE, Trépanier MO, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice. J Neuroinflammation. 2016;13(1):257. Published 2016 Sep 29. doi:10.1186/s12974-016-0721-5
Mohaibes RJ, Fiol-deRoque MA, Torres M, et al. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1596-1603. doi:10.1016/j.bbamem.2017.02.020
Naik RA, Rajpoot R, Koiri RK, et al. Dietary supplementation and the role of phytochemicals against the Alzheimer's disease: Focus on polyphenolic compounds. J Prev Alzheimers Dis. 2025;12(1):100004. doi:10.1016/j.tjpad.2024.100004
Ono K, Yamada M. Vitamin A and Alzheimer's disease. Geriatr Gerontol Int. 2012;12(2):180-188. doi:10.1111/j.1447-0594.2011.00786.x
Kang J, Park M, Lee E, Jung J, Kim T. The Role of Vitamin D in Alzheimer's Disease: A Transcriptional Regulator of Amyloidopathy and Gliopathy. Biomedicines. 2022;10(8):1824. Published 2022 Jul 28. doi:10.3390/biomedicines10081824
Wang Q, Zhao J, Chang H, Liu X, Zhu R. Homocysteine and Folic Acid: Risk Factors for Alzheimer's Disease-An Updated Meta-Analysis. Front Aging Neurosci. 2021;13:665114. Published 2021 May 26. doi:10.3389/fnagi.2021.665114
Plascencia-Villa G, Perry G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer's Disease. Antioxidants (Basel). 2023;12(8):1628. Published 2023 Aug 17. doi:10.3390/antiox12081628
Bhuiyan NZ, Hasan MK, Mahmud Z, Hossain MS, Rahman A. Prevention of Alzheimer's disease through diet: An exploratory review. Metabol Open. 2023;20:100257. Published 2023 Sep 21. doi:10.1016/j.metop.2023.100257
Elser H, Horváth-Puhó E, Gradus JL, et al. Association of Early-, Middle-, and Late-Life Depression With Incident Dementia in a Danish Cohort. JAMA Neurol. 2023;80(9):949-958. doi:10.1001/jamaneurol.2023.2309
Burke SL, Cadet T, Alcide A, O'Driscoll J, Maramaldi P. Psychosocial risk factors and Alzheimer's disease: the associative effect of depression, sleep disturbance, and anxiety. Aging Ment Health. 2018;22(12):1577-1584. doi:10.1080/13607863.2017.1387760
Green RC, Cupples LA, Kurz A, et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol. 2003;60(5):753-759. doi:10.1001/archneur.60.5.753
Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes?. J Neurol Sci. 2012;322(1-2):141-147. doi:10.1016/j.jns.2012.07.032
Lennon MJ, Makkar SR, Crawford JD, Sachdev PS. Midlife Hypertension and Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2019;71(1):307-316. doi:10.3233/JAD-190474
Alford S, Patel D, Perakakis N, Mantzoros CS. Obesity as a risk factor for Alzheimer's disease: weighing the evidence. Obes Rev. 2018;19(2):269-280. doi:10.1111/obr.12629
Ramirez A, Wolfsgruber S, Lange C, et al. Elevated HbA1c is associated with increased risk of incident dementia in primary care patients. J Alzheimers Dis. 2015;44(4):1203-1212. doi:10.3233/JAD-141521
Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The Epidemiology of Alzheimer's Disease Modifiable Risk Factors and Prevention. J Prev Alzheimers Dis. 2021;8(3):313-321. doi:10.14283/jpad.2021.15
Wang KC, Woung LC, Tsai MT, Liu CC, Su YH, Li CY. Risk of Alzheimer's disease in relation to diabetes: a population-based cohort study. Neuroepidemiology. 2012;38(4):237-244. doi:10.1159/000337428
Dhana K, Evans DA, Rajan KB, Bennett DA, Morris MC. Healthy lifestyle and the risk of Alzheimer dementia: Findings from 2 longitudinal studies. Neurology. 2020;95(4):e374-e383. doi:10.1212/WNL.0000000000009816
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adrianna Bogucka, Agata Kotkowiak, Karolina Knychalska, Mikołaj Łabuda, Teresa Sowińska, Agnieszka Szema, Oliwia Mentel, Aleksandra Słojewska, Jakub Sikora, Klaudia Królikowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 110
Number of citations: 0