Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

The Potential Role of Creatine Supplementation in Glycemic Control and Insulin Resistance: A Literature Review
  • Home
  • /
  • The Potential Role of Creatine Supplementation in Glycemic Control and Insulin Resistance: A Literature Review
  1. Home /
  2. Archives /
  3. Vol. 80 (2025) /
  4. Medical Sciences

The Potential Role of Creatine Supplementation in Glycemic Control and Insulin Resistance: A Literature Review

Authors

  • Klaudia Królikowska University Clinical Hospital no. 2 PMU in Szczecin, Powstańców Wielkopolskich 72 St 70-111 Szczecin https://orcid.org/0009-0007-7984-4642
  • Jakub Sikora Profi-Med Medical Center Goleniów Marii Konopnickiej 10A 72-100 Goleniów https://orcid.org/0009-0007-9637-0709
  • Karolina Knychalska University Clinical Hospital no. 2 PMU in Szczecin, Powstańców Wielkopolskich 72 St 70-111 Szczecin https://orcid.org/0009-0003-3736-0579
  • Mikołaj Łabuda Independent Public Voivodeship Integrated Hospital in Szczecin, ul. Arkońska 4 71-455 Szczecin https://orcid.org/0009-0002-4137-4319
  • Aleksandra Słojewska Independent Public Voivodeship Integrated Hospital in Szczecin, ul. Arkońska 4 71-455 Szczecin https://orcid.org/0009-0007-7532-0948
  • Agata Kotkowiak Family Medicine Clinic "Podgórna", Podgórna 22 St. 70-205 Szczecin Poland https://orcid.org/0009-0004-4797-6980
  • Teresa Sowińska University Clinical Hospital no. 2 PMU in Szczecin, Powstańców Wielkopolskich 72 St 70-111 Szczecin https://orcid.org/0009-0003-0061-212X
  • Oliwia Mentel University Clinical Hospital no. 2 PMU in Szczecin, Powstańców Wielkopolskich 72 St 70-111 Szczecin https://orcid.org/0009-0004-4739-0621
  • Adrianna Bogucka Independent Public Voivodeship Integrated Hospital in Szczecin, ul. Arkońska 4 71-455 Szczecin https://orcid.org/0009-0001-8870-0495
  • Agnieszka Szema University Clinical Hospital no. 2 PMU in Szczecin, Powstańców Wielkopolskich 72 St 70-111 Szczecin https://orcid.org/0009-0000-5017-3426

DOI:

https://doi.org/10.12775/JEHS.2025.80.59992

Keywords

creatine, type 2 diabetes, insulin resistance, glucose metabolism

Abstract

Introduction and purpose
Type 2 diabetes mellitus (T2DM) is a severe metabolic disorder characterized by insulin resistance and persistent hyperglycemia, leading to serious cardiometabolic complications. Recent studies suggest that creatine supplementation may influence glucose metabolism and insulin sensitivity. This review aims to summarize the current knowledge on the effects of creatine on glucose regulation and its potential therapeutic implications for metabolic disorders.

 

Description of the state of knowledge
Creatine is a non-protein amino acid primarily stored in muscle cells as phosphocreatine, which is essential for ATP resynthesis. Beyond its role in energy metabolism, creatine exhibits pleiotropic effects, including modulation of glycogen stores, oxidative stress, inflammatory responses, and insulin signaling. Studies indicate that creatine supplementation can enhance glucose uptake by increasing GLUT-4 translocation and activating AMPK, mimicking the mechanisms induced by exercise. Moreover, some findings suggest that creatine may improve glycemic control, particularly when combined with physical activity. However, while animal studies demonstrate a reduction in hyperglycemia, clinical studies report inconsistent results regarding insulin secretion and overall metabolic effects.


Conclusions
Creatine supplementation appears promising as an adjunct therapy for improving insulin sensitivity and glucose homeostasis, particularly in combination with exercise. However, the exact mechanisms and long-term metabolic outcomes remain to be fully elucidated. Further randomized controlled trials are needed to determine its clinical applicability in T2DM and other metabolic disorders.

References

[1] Heald AH, Stedman M, Davies M, et al. Estimating life years lost to diabetes: outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc Endocrinol Metab. 2020;9(4):183-185. Published 2020 Jun 2. doi:10.1097/XCE.0000000000000210

[2] Xiong J, Hu H, Guo R, Wang H, Jiang H. Mesenchymal Stem Cell Exosomes as a New Strategy for the Treatment of Diabetes Complications. Front Endocrinol (Lausanne). 2021;12:646233. Published 2021 Apr 29. doi:10.3389/fendo.2021.646233

[3] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782-787. doi:10.1038/414782a

[4] Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003;46(1):3-19. doi:10.1007/s00125-002-1009-0

[5] Bonilla DA, Kreider RB, Stout JR, et al. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients. 2021;13(4):1238. Published 2021 Apr 9. doi:10.3390/nu13041238

[6] Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107-1213. doi:10.1152/physrev.2000.80.3.1107

[7] Chilibeck PD, Kaviani M, Candow DG, Zello GA. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017;8:213-226. Published 2017 Nov 2. doi:10.2147/OAJSM.S123529

[8] Buford TW, Kreider RB, Stout JR, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6. Published 2007 Aug 30. doi:10.1186/1550-2783-4-6

[9] Antonio J, Candow DG, Forbes SC, et al. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?. J Int Soc Sports Nutr. 2021;18(1):13. Published 2021 Feb 8. doi:10.1186/s12970-021-00412-w

[10] Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83(3):367-374. doi:10.1042/cs0830367

[11] Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13(2):198-226. doi:10.1123/ijsnem.13.2.198

[12] Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids. 2016;48(8):1793-1805. doi:10.1007/s00726-016-2239-7

[13] Nelson AG, Arnall DA, Kokkonen J, Day R, Evans J. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exerc. 2001;33(7):1096-1100. doi:10.1097/00005768-200107000-00005

[14] Green AL, Simpson EJ, Littlewood JJ, Macdonald IA, Greenhaff PL. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand. 1996;158(2):195-202. doi:10.1046/j.1365-201X.1996.528300000.x

[15] Marco J, Calle C, Hedo JA, Villanueva ML. Glucagon-releasing activity of guanidine compounds in mouse pancreatic islets. FEBS Lett. 1976;64(1):52-54. doi:10.1016/0014-5793(76)80246-3

[16] Alsever RN, Georg RH, Sussman KE. Stimulation of insulin secretion by guanidinoacetic acid and other guanidine derivatives. Endocrinology. 1970;86(2):332-336. doi:10.1210/endo-86-2-332

[17] Steenge GR, Lambourne J, Casey A, Macdonald IA, Greenhaff PL. Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol. 1998;275(6):E974-E979. doi:10.1152/ajpendo.1998.275.6.E974

[18] Newman JE, Hargreaves M, Garnham A, Snow RJ. Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med Sci Sports Exerc. 2003;35(1):69-74. doi:10.1097/00005768-200301000-00012

[19] Ferrante RJ, Andreassen OA, Jenkins BG, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J Neurosci. 2000;20(12):4389-4397. doi:10.1523/JNEUROSCI.20-12-04389.2000

[20] Gualano B, Novaes RB, Artioli GG, et al. Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids. 2008;34(2):245-250. doi:10.1007/s00726-007-0508-1

[21] Gualano B, DE Salles Painneli V, Roschel H, et al. Creatine in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Med Sci Sports Exerc. 2011;43(5):770-778. doi:10.1249/MSS.0b013e3181fcee7d

[22] GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021 [published correction appears in Lancet. 2023 Sep 30;402(10408):1132. doi: 10.1016/S0140-6736(23)02044-5.] [published correction appears in Lancet. 2025 Jan 18;405(10474):202. doi: 10.1016/S0140-6736(25)00053-4.]. Lancet. 2023;402(10397):203-234. doi:10.1016/S0140-6736(23)01301-6

[23] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [published correction appears in Lancet. 2020 Nov 14;396(10262):1562. doi: 10.1016/S0140-6736(20)32226-1.]. Lancet. 2020;396(10258):1204-1222. doi:10.1016/S0140-6736(20)30925-9

[24] Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 [published correction appears in Diabetes Res Clin Pract. 2023 Oct;204:110945. doi: 10.1016/j.diabres.2023.110945.]. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119

[25] Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev. 2016;37(3):278-316. doi:10.1210/er.2015-1137

[26] Bonnefond A, Froguel P. Rare and common genetic events in type 2 diabetes: what should biologists know?. Cell Metab. 2015;21(3):357-368. doi:10.1016/j.cmet.2014.12.020

[27] Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3-16. doi:10.1007/s00125-018-4711-2

[28] Liu W, Zhang D, Wang R, et al. Global trends in the burden of chronic kidney disease attributable to type 2 diabetes: An age-period-cohort analysis. Diabetes Obes Metab. 2024;26(2):602-610. doi:10.1111/dom.15349

[29] Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic Foot Ulcers: A Review. JAMA. 2023;330(1):62-75. doi:10.1001/jama.2023.10578

[30] Hicks CW, Selvin E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Curr Diab Rep. 2019;19(10):86. Published 2019 Aug 27. doi:10.1007/s11892-019-1212-8

[31] Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580-1591. doi:10.1016/j.ophtha.2021.04.027

[32] Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med. 2003;163(4):427-436. doi:10.1001/archinte.163.4.427

[33] Parcha V, Heindl B, Kalra R, et al. Insulin Resistance and Cardiometabolic Risk Profile Among Nondiabetic American Young Adults: Insights From NHANES. J Clin Endocrinol Metab. 2022;107(1):e25-e37. doi:10.1210/clinem/dgab645

[34] Op 't Eijnde B, Ursø B, Richter EA, Greenhaff PL, Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50(1):18-23. doi:10.2337/diabetes.50.1.18

[35] Alves CR, Ferreira JC, de Siqueira-Filho MA, Carvalho CR, Lancha AH Jr, Gualano B. Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-α?. Amino Acids. 2012;43(4):1803-1807. doi:10.1007/s00726-012-1246-6

[36] Henriksen EJ. Invited review: Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol (1985). 2002;93(2):788-796. doi:10.1152/japplphysiol.01219.2001

[37] Ju JS, Smith JL, Oppelt PJ, Fisher JS. Creatine feeding increases GLUT4 expression in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2005;288(2):E347-E352. doi:10.1152/ajpendo.00238.2004

[38] van Loon LJ, Murphy R, Oosterlaar AM, et al. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci (Lond). 2004;106(1):99-106. doi:10.1042/CS20030116

[39] Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics. 2008;32(2):219-228. doi:10.1152/physiolgenomics.00157.2007

[40] Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433-1438. doi:10.2337/dc06-9910

[41] Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48(5):1192-1197. doi:10.2337/diabetes.48.5.1192

[42] Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem. 1994;269(20):14396-14401.

[43] Charron MJ, Brosius FC 3rd, Alper SL, Lodish HF. A glucose transport protein expressed predominately in insulin-responsive tissues. Proc Natl Acad Sci U S A. 1989;86(8):2535-2539. doi:10.1073/pnas.86.8.2535

[44] Low SY, Rennie MJ, Taylor PM. Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol. 1996;495 ( Pt 2)(Pt 2):299-303. doi:10.1113/jphysiol.1996.sp021594

[45] Baquet A, Hue L, Meijer AJ, van Woerkom GM, Plomp PJ. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990;265(2):955-959.

[46] Deldicque L, Louis M, Theisen D, et al. Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005;37(5):731-736. doi:10.1249/01.mss.0000162690.39830.27

[47] DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. Published 2015 Jul 23. doi:10.1038/nrdp.2015.19

[48] Krüger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A. 2008;105(7):2451-2456. doi:10.1073/pnas.0711713105

[49] Ramos PM, Martínez VB, Granado JQ, Juanatey JR. Temas de actualidad en hipertensión arterial y diabetes [Advances in hypertension and diabetes in 2007]. Rev Esp Cardiol. 2008;61 Suppl 1:58-71.

[50] DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2(Suppl 2):S157-S163. doi:10.2337/dc09-S302

[51] Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130-1139. doi:10.2337/diacare.2951130

[52] Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55(10):2565-2582. doi:10.1007/s00125-012-2644-8

[53] Bouzakri K, Karlsson HK, Vestergaard H, Madsbad S, Christiansen E, Zierath JR. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients. Diabetes. 2006;55(3):785-791. doi:10.2337/diabetes.55.03.06.db05-0796

[54] Palomino-Schätzlein M, Lamas-Domingo R, Ciudin A, et al. A Translational In Vivo and In Vitro Metabolomic Study Reveals Altered Metabolic Pathways in Red Blood Cells of Type 2 Diabetes. J Clin Med. 2020;9(6):1619. Published 2020 May 27. doi:10.3390/jcm9061619

[55] Post A, Groothof D, Schutten JC, et al. Plasma creatine and incident type 2 diabetes in a general population-based cohort: The PREVEND study. Clin Endocrinol (Oxf). 2021;94(4):563-574. doi:10.1111/cen.14396

[56] Pinto CL, Botelho PB, Pimentel GD, Campos-Ferraz PL, Mota JF. Creatine supplementation and glycemic control: a systematic review. Amino Acids. 2016;48(9):2103-2129. doi:10.1007/s00726-016-2277-1

[57] Alsever RN, Georg RH, Sussman KE. Stimulation of insulin secretion by guanidinoacetic acid and other guanidine derivatives. Endocrinology. 1970;86(2):332-336. doi:10.1210/endo-86-2-332

[58] Marco J, Calle C, Hedo JA, Villanueva ML. Glucagon-releasing activity of guanidine compounds in mouse pancreatic islets. FEBS Lett. 1976;64(1):52-54. doi:10.1016/0014-5793(76)80246-3

[59] Rooney K, Bryson J, Phuyal J, Denyer G, Caterson I, Thompson C. Creatine supplementation alters insulin secretion and glucose homeostasis in vivo. Metabolism. 2002;51(4):518-522. doi:10.1053/meta.2002.31330

[60] Op't Eijnde B, Jijakli H, Hespel P, Malaisse WJ. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes. Int J Mol Med. 2006;17(6):1077-1084.

[61] Matthews RT, Yang L, Jenkins BG, et al. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J Neurosci. 1998;18(1):156-163. doi:10.1523/JNEUROSCI.18-01-00156.1998

[62] Hosamani R, Ramesh SR, Muralidhara. Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in Drosophila melanogaster supplemented with creatine. Neurochem Res. 2010;35(9):1402-1412. doi:10.1007/s11064-010-0198-z

[63] Lawler JM, Barnes WS, Wu G, Song W, Demaree S. Direct antioxidant properties of creatine. Biochem Biophys Res Commun. 2002;290(1):47-52. doi:10.1006/bbrc.2001.6164

[64] Sestili P, Martinelli C, Bravi G, et al. Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med. 2006;40(5):837-849. doi:10.1016/j.freeradbiomed.2005.10.035

[65] Rahimi R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond Res. 2011;25(12):3448-3455. doi:10.1519/JSC.0b013e3182162f2b

[66] Guidi C, Potenza L, Sestili P, et al. Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. Biochim Biophys Acta. 2008;1780(1):16-26. doi:10.1016/j.bbagen.2007.09.018

[67] Copeland WC. The mitochondrial DNA polymerase in health and disease. Subcell Biochem. 2010;50:211-222. doi:10.1007/978-90-481-3471-7_11

[68] Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 2008;10(4):291-315. doi:10.1007/s12017-008-8044-z

[69] Bender A, Beckers J, Schneider I, et al. Creatine improves health and survival of mice. Neurobiol Aging. 2008;29(9):1404-1411. doi:10.1016/j.neurobiolaging.2007.03.001

[70] Sestili P, Martinelli C, Colombo E, et al. Creatine as an antioxidant. Amino Acids. 2011;40(5):1385-1396. doi:10.1007/s00726-011-0875-5

[71] Fimognari C, Sestili P, Lenzi M, Cantelli-Forti G, Hrelia P. Protective effect of creatine against RNA damage [published correction appears in Mutat Res. 2010 Apr 1;686(1-2):96]. Mutat Res. 2009;670(1-2):59-67. doi:10.1016/j.mrfmmm.2009.07.005

[72] Louis M, Van Beneden R, Dehoux M, Thissen JP, Francaux M. Creatine increases IGF-I and myogenic regulatory factor mRNA in C(2)C(12) cells. FEBS Lett. 2004;557(1-3):243-247. doi:10.1016/s0014-5793(03)01504-7

[73] Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M. Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am J Physiol Cell Physiol. 2007;293(4):C1263-C1271. doi:10.1152/ajpcell.00162.2007

[74] Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN. Exocytotic release of creatine in rat brain. Synapse. 2006;60(2):118-123. doi:10.1002/syn.20280

[75] De Deyn PP, Macdonald RL. Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol. 1990;28(5):627-633. doi:10.1002/ana.410280505

[76] Koga Y, Takahashi H, Oikawa D, Tachibana T, Denbow DM, Furuse M. Brain creatine functions to attenuate acute stress responses through GABAnergic system in chicks. Neuroscience. 2005;132(1):65-71. doi:10.1016/j.neuroscience.2005.01.004

[77] Young JF, Larsen LB, Malmendal A, et al. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics. J Int Soc Sports Nutr. 2010;7(1):9. Published 2010 Feb 4. doi:10.1186/1550-2783-7-9

[78] Reid MB. Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (1985). 2001;90(2):724-731. doi:10.1152/jappl.2001.90.2.724

[79] Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997;11(7):526-534.

[80] Solis MY, Artioli GG, Otaduy MCG, et al. Effect of age, diet, and tissue type on PCr response to creatine supplementation. J Appl Physiol (1985). 2017;123(2):407-414. doi:10.1152/japplphysiol.00248.2017

[81] Gotshalk LA, Kraemer WJ, Mendonca MA, et al. Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol. 2008;102(2):223-231. doi:10.1007/s00421-007-0580-y

[82] Rawson ES, Clarkson PM. Acute creatine supplementation in older men. Int J Sports Med. 2000;21(1):71-75. doi:10.1055/s-2000-8859

[83]Rawson ES, Wehnert ML, Clarkson PM. Effects of 30 days of creatine ingestion in older men. Eur J Appl Physiol Occup Physiol. 1999;80(2):139-144. doi:10.1007/s004210050570

[84]Young JC, Young RE. The effect of creatine supplementation on glucose uptake in rat skeletal muscle. Life Sci. 2002;71(15):1731-1737. doi:10.1016/s0024-3205(02)01941-0

[85] Nicastro H, Gualano B, de Moraes WM, et al. Effects of creatine supplementation on muscle wasting and glucose homeostasis in rats treated with dexamethasone. Amino Acids. 2012;42(5):1695-1701. doi:10.1007/s00726-011-0871-9

[86] Rooney KB, Bryson JM, Digney AL, Rae CD, Thompson CH. Creatine supplementation affects glucose homeostasis but not insulin secretion in humans. Ann Nutr Metab. 2003;47(1):11-15. doi:10.1159/000068908

[87] Rocic B, Bajuk NB, Rocic P, Weber DS, Boras J, Lovrencic MV. Comparison of antihyperglycemic effects of creatine and metformin in type II diabetic patients. Clin Invest Med. 2009;32(6):E322. Published 2009 Dec 1. doi:10.25011/cim.v32i6.10669

[88] Robinson TM, Sewell DA, Hultman E, Greenhaff PL. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol (1985). 1999;87(2):598-604. doi:10.1152/jappl.1999.87.2.598

[89] Vaisy M, Szlufcik K, De Bock K, et al. Exercise-induced, but not creatine-induced, decrease in intramyocellular lipid content improves insulin sensitivity in rats. J Nutr Biochem. 2011;22(12):1178-1185. doi:10.1016/j.jnutbio.2010.10.004

[90] Derave W, Eijnde BO, Verbessem P, et al. Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. J Appl Physiol (1985). 2003;94(5):1910-1916. doi:10.1152/japplphysiol.00977.2002

[91] Oliveira CLP, Antunes BMM, Gomes AC, et al. Creatine supplementation does not promote additional effects on inflammation and insulin resistance in older adults: A pilot randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN. 2020;38:94-98. doi:10.1016/j.clnesp.2020.05.024

Downloads

  • PDF

Published

2025-05-09

How to Cite

1.
KRÓLIKOWSKA, Klaudia, SIKORA, Jakub, KNYCHALSKA, Karolina, ŁABUDA, Mikołaj, SŁOJEWSKA, Aleksandra, KOTKOWIAK, Agata, SOWIŃSKA, Teresa, MENTEL, Oliwia, BOGUCKA, Adrianna and SZEMA, Agnieszka. The Potential Role of Creatine Supplementation in Glycemic Control and Insulin Resistance: A Literature Review. Journal of Education, Health and Sport. Online. 9 May 2025. Vol. 80, p. 59992. [Accessed 21 June 2025]. DOI 10.12775/JEHS.2025.80.59992.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 80 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Klaudia Królikowska, Jakub Sikora, Karolina Knychalska, Mikołaj Łabuda, Aleksandra Słojewska, Agata Kotkowiak, Teresa Sowińska, Oliwia Mentel, Adrianna Bogucka, Agnieszka Szema

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 156
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

creatine, type 2 diabetes, insulin resistance, glucose metabolism
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop