The Impact of Caffeine on Anxiety Levels and Stress Responses - a literature review
DOI:
https://doi.org/10.12775/JEHS.2025.81.59947Keywords
caffeine, anxiety, stress, stress response, mental healthAbstract
Introduction and Purpose:
Caffeine is one of the most widely consumed stimulants worldwide, primarily due to its stimulating properties. However, its effects on mental health, particularly in relation to anxiety and stress responses, remain a subject of debate. This study aims to analyze the mechanisms through which caffeine affects the nervous system and assess its impact on anxiety levels and physiological responses to stress. Additionally, it discusses individual differences in caffeine metabolism and their implications for tolerance to this compound.
State of Knowledge:
Previous research indicates that caffeine modulates nervous system function by affecting neurotransmission, particularly by increasing the release of dopamine, noradrenaline, and serotonin. Evidence suggests that caffeine’s effects can be both beneficial and detrimental, depending on the dose consumed, individual genetic predispositions (such as polymorphisms in the ADORA2A and CYP1A2 genes), and the presence of anxiety disorders.
Conclusion:
The findings of this review suggest that caffeine can exert both positive and negative effects on mental health. Dosage, individual metabolic differences, and genetic predispositions strongly influence these effects. Further research is necessary to precisely determine the conditions under which caffeine consumption is safe and when it may contribute to heightened anxiety and stress.
References
[1] Committee on Military Nutrition Research. Caffeine for the sustainment of mental task performance: formulations for military operations. National Academies Press, 2002.
[2] Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev. 1992;17(2):139-170. doi:10.1016/0165-0173(92)90012-b
[3] Zhang WY. A benefit-risk assessment of caffeine as an analgesic adjuvant. Drug Saf. 2001;24(15):1127-1142. doi:10.2165/00002018-200124150-00004
[4] Kot M, Daniel WA. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat. Pharmacol Rep. 2008;60(6):789-797.
[5] Roshan MH, Tambo A, Pace NP. Potential Role of Caffeine in the Treatment of Parkinson's Disease. Open Neurol J. 2016;10:42-58. Published 2016 Jul 26. doi:10.2174/1874205X01610010042
[6] Newton R, Broughton LJ, Lind MJ, Morrison PJ, Rogers HJ, Bradbrook ID. Plasma and salivary pharmacokinetics of caffeine in man. Eur J Clin Pharmacol. 1981;21(1):45-52. doi:10.1007/BF00609587
[7] Turnbull D, Rodricks JV, Mariano GF, Chowdhury F. Caffeine and cardiovascular health. Regul Toxicol Pharmacol. 2017;89:165-185. doi:10.1016/j.yrtph.2017.07.025
[8] Zulli A, Smith RM, Kubatka P, et al. Caffeine and cardiovascular diseases: critical review of current research. Eur J Nutr. 2016;55(4):1331-1343. doi:10.1007/s00394-016-1179-z
[9] Doepker C, Lieberman HR, Smith AP, Peck JD, El-Sohemy A, Welsh BT. Caffeine: Friend or Foe?. Annu Rev Food Sci Technol. 2016;7:117-137. doi:10.1146/annurev-food-041715-033243
[10] Martínez-López S, Sarriá B, Baeza G, Mateos R, Bravo-Clemente L. Pharmacokinetics of caffeine and its metabolites in plasma and urine after consuming a soluble green/roasted coffee blend by healthy subjects. Food Res Int. 2014;64:125-133. doi:10.1016/j.foodres.2014.05.043
[11] Mandel HG. Update on caffeine consumption, disposition and action. Food Chem Toxicol. 2002;40(9):1231-1234. doi:10.1016/s0278-6915(02)00093-5
[12] Dworzański W, Opielak G, Burdan F. Niepozadane działania kofeiny [Side effects of caffeine]. Pol Merkur Lekarski. 2009;27(161):357-361.
[13] Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20(1):1-30. doi:10.1080/0265203021000007840
[14] Quinlan PT, Lane J, Moore KL, Aspen J, Rycroft JA, O'Brien DC. The acute physiological and mood effects of tea and coffee: the role of caffeine level. Pharmacol Biochem Behav. 2000;66(1):19-28. doi:10.1016/s0091-3057(00)00192-1
[15] Becker AB, Simons KJ, Gillespie CA, Simons FE. The bronchodilator effects and pharmacokinetics of caffeine in asthma. N Engl J Med. 1984;310(12):743-746. doi:10.1056/NEJM198403223101202
[16] Weichelt U, Cay R, Schmitz T, et al. Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine. Eur Respir J. 2013;41(4):966-973. doi:10.1183/09031936.00012412
[17] Smith A. Effects of caffeine on human behavior. Food Chem Toxicol. 2002;40(9):1243-1255. doi:10.1016/s0278-6915(02)00096-0
[18] Klevebrant L, Frick A. Effects of caffeine on anxiety and panic attacks in patients with panic disorder: A systematic review and meta-analysis. Gen Hosp Psychiatry. 2022;74:22-31. doi:10.1016/j.genhosppsych.2021.11.005
[19] Lovallo WR, Farag NH, Vincent AS, Thomas TL, Wilson MF. Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacol Biochem Behav. 2006;83(3):441-447. doi:10.1016/j.pbb.2006.03.005
[20] Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83-133.
[21] Nehlig A. Is caffeine a cognitive enhancer?. J Alzheimers Dis. 2010;20 Suppl 1:S85-S94. doi:10.3233/JAD-2010-091315
[22] Lorist MM, Tops M. Caffeine, fatigue, and cognition. Brain Cogn. 2003;53(1):82-94. doi:10.1016/s0278-2626(03)00206-9
[23] McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine's effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294-312. doi:10.1016/j.neubiorev.2016.09.001
[24] Kalow W, Tang BK. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther. 1991;50(5 Pt 1):508-519. doi:10.1038/clpt.1991.176
[25] Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T. Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem. 1999;125(4):803-808. doi:10.1093/oxfordjournals.jbchem.a022352
[26] Han XM, Ou-Yang DS, Lu PX, et al. Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics. 2001;11(5):429-435. doi:10.1097/00008571-200107000-00006
[27] Djordjevic N, Ghotbi R, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 -163C>A polymorphism. Eur J Clin Pharmacol. 2010;66(7):697-703. doi:10.1007/s00228-010-0823-4
[28] Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33(12):2791-2800. doi:10.1038/npp.2008.17
[29] Rogers PJ, Hohoff C, Heatherley SV, et al. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology. 2010;35(9):1973-1983. doi:10.1038/npp.2010.71
[30] Tantcheva-Poór I, Zaigler M, Rietbrock S, Fuhr U. Estimation of cytochrome P-450 CYP1A2 activity in 863 healthy Caucasians using a saliva-based caffeine test [published correction appears in Pharmacogenetics 1999 Dec;9(6):781]. Pharmacogenetics. 1999;9(2):131-144.
[31] Evans SM, Griffiths RR. Caffeine tolerance and choice in humans. Psychopharmacology (Berl). 1992;108(1-2):51-59. doi:10.1007/BF02245285
[32] Boulenger JP, Uhde TW, Wolff EA 3rd, Post RM. Increased sensitivity to caffeine in patients with panic disorders. Preliminary evidence. Arch Gen Psychiatry. 1984;41(11):1067-1071. doi:10.1001/archpsyc.1983.01790220057009
[33] Charney DS, Heninger GR, Jatlow PI. Increased anxiogenic effects of caffeine in panic disorders. Arch Gen Psychiatry. 1985;42(3):233-243. doi:10.1001/archpsyc.1985.01790260027003
[34] Bruce M, Scott N, Shine P, Lader M. Anxiogenic effects of caffeine in patients with anxiety disorders. Arch Gen Psychiatry. 1992;49(11):867-869. doi:10.1001/archpsyc.1992.01820110031004
[35] Nardi AE, Lopes FL, Freire RC, et al. Panic disorder and social anxiety disorder subtypes in a caffeine challenge test. Psychiatry Res. 2009;169(2):149-153. doi:10.1016/j.psychres.2008.06.023
[36] Nardi AE, Valença AM, Nascimento I, et al. A caffeine challenge test in panic disorder patients, their healthy first-degree relatives, and healthy controls. Depress Anxiety. 2008;25(10):847-853. doi:10.1002/da.20354
[37] Masdrakis VG, Papakostas YG, Vaidakis N, Papageorgiou C, Pehlivanidis A. Caffeine challenge in patients with panic disorder: baseline differences between those who panic and those who do not. Depress Anxiety. 2008;25(9):E72-E79. doi:10.1002/da.20333
[38] Iranpour S, Sabour S. Inverse association between caffeine intake and depressive symptoms in US adults: data from National Health and Nutrition Examination Survey (NHANES) 2005-2006. Psychiatry Res. 2019;271:732-739. doi:10.1016/j.psychres.2018.11.004
[39] Wang L, Shen X, Wu Y, Zhang D. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust N Z J Psychiatry. 2016;50(3):228-242. doi:10.1177/0004867415603131
[40] Lee MA, Flegel P, Greden JF, Cameron OG. Anxiogenic effects of caffeine on panic and depressed patients. Am J Psychiatry. 1988;145(5):632-635. doi:10.1176/ajp.145.5.632
[41] Parsons WD, Neims AH. Effect of smoking on caffeine clearance. Clin Pharmacol Ther. 1978;24(1):40-45. doi:10.1002/cpt197824140
[42] Kalow W, Tang BK. Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking. Clin Pharmacol Ther. 1991;49(1):44-48. doi:10.1038/clpt.1991.8
[43] Grosso LM, Bracken MB. Caffeine metabolism, genetics, and perinatal outcomes: a review of exposure assessment considerations during pregnancy. Ann Epidemiol. 2005;15(6):460-466. doi:10.1016/j.annepidem.2004.12.011+
[44] Aldridge A, Bailey J, Neims AH. The disposition of caffeine during and after pregnancy. Semin Perinatol. 1981;5(4):310-314.
[45] Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39(2):127-153. doi:10.2165/00003088-200039020-00004
[46] Benowitz NL. Clinical pharmacology of caffeine. Annu Rev Med.1990;41:277-288. doi:10.1146/annurev.me.41.020190.001425
[47] Birkett DJ, Miners JO. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events. Br J Clin Pharmacol. 1991;31(4):405-408. doi:10.1111/j.1365-2125.1991.tb05553.x
[48] Giles GE, Spring AM, Urry HL, Moran JM, Mahoney CR, Kanarek RB. Caffeine alters emotion and emotional responses in low habitual caffeine consumers. Can J Physiol Pharmacol. 2018;96(2):191-199. doi:10.1139/cjpp-2017-0224
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Karolina Knychalska, Jakub Sikora, Mikołaj Łabuda, Klaudia Królikowska, Aleksandra Słojewska, Agata Kotkowiak, Teresa Sowińska, Oliwia Mentel, Adrianna Bogucka , Agnieszka Szema

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 401
Number of citations: 0