Artificial intelligence and machine learning in modern cardiology: Advancements in diagnosis, treatment and patient monitoring
DOI:
https://doi.org/10.12775/JEHS.2025.80.59924Keywords
artificial intelligence, machine learning, cardiology, cardiac diagnosis, cardiovascular disease, personalized therapy, echocardiography, computed tomography, electrocardiography, monitoring, percutaneous coronary interventionAbstract
Introduction and purpose: Artificial intelligence (AI) and machine learning (ML) are impacting cardiology by enhancing diagnostic accuracy, personalizing treatment and optimizing patient care. This review examines current and emerging applications of AI and ML in cardiology, highlighting their transformative impact on clinical practice, workflow efficiency, and long-term patient outcomes.
Description of the state of knowledge: AI and ML, including advanced neural networks and predictive analytics, demonstrate exceptional sensitivity and specificity in interpreting electrocardiograms (ECGs), echocardiograms, CT scans, and cardiac MRIs. These technologies facilitate early detection of conditions such as coronary artery disease, atrial fibrillation, and hypertrophic cardiomyopathy, while also enabling risk stratification for heart failure, myocardial infarction, and sudden cardiac death. Additionally, AI-driven algorithms support personalized treatment strategies, real-time remote monitoring, and precision-guided coronary interventions, reducing procedural complications. Recent advancements also show promise in automating echocardiographic measurements and optimizing cardiac resynchronization therapy, further enhancing diagnostic and therapeutic precision.
Conclusions: AI and ML hold transformative potential for cardiology, enabling faster, more accurate diagnoses and data-driven therapeutic decisions. Their integration into clinical practice promises to improve prognostic accuracy, reduce healthcare costs, and enhance patient-centered care.
References
1.Upton R, Mumith A, Beqiri A, et al. Automated echocardiographic detection of severe coronary artery disease using artificial intelligence. JACC Cardiovascular Imaging. 2021;15(5):715-727. doi:10.1016/j.jcmg.2021.10.013
2.Guo Y, Xia C, Zhong Y, et al. Machine learning-enhanced echocardiography for screening coronary artery disease. BioMedical Engineering OnLine. 2023;22(1). doi:10.1186/s12938-023-01106-x
3.Woodward G, Bajre M, Bhattacharyya S, et al. PROTEUS Study: A prospective randomized controlled trial evaluating the use of artificial intelligence in stress echocardiography. American Heart Journal. 2023;263:123-132. doi:10.1016/j.ahj.2023.05.003
4.Gruwez H, Barthels M, Haemers P, et al. Detecting paroxysmal atrial fibrillation from an electrocardiogram in sinus rhythm. JACC Clinical Electrophysiology. 2023;9(8):1771-1782. doi:10.1016/j.jacep.2023.04.008
5.Noseworthy PA, Attia ZI, Behnken EM, et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. The Lancet. 2022;400(10359):1206-1212. doi:10.1016/s0140-6736(22)01637-3
6.D’Ancona G, Massussi M, Savardi M, et al. Deep learning to detect significant coronary artery disease from plain chest radiographs AI4CAD. International Journal of Cardiology. 2022;370:435-441. doi:10.1016/j.ijcard.2022.10.154
7.Sideris K, Weir CR, Schmalfuss C, et al. Artificial intelligence predictive analytics in heart failure: results of the pilot phase of a pragmatic randomized clinical trial. Journal of the American Medical Informatics Association. 2024;31(4):919-928. doi:10.1093/jamia/ocae017
8.He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 2023;616(7957):520-524. doi:10.1038/s41586-023-05947-3 (2)
9.Lin A, Van Diemen PA, Motwani M, et al. Machine learning from quantitative coronary computed tomography angiography predicts fractional flow Reserve–Defined ischemia and impaired myocardial blood flow. Circulation Cardiovascular Imaging. 2022;15(10). doi:10.1161/circimaging.122.014369
10.De Backer O, Iriart X, Kefer J, et al. Impact of computational modeling on transcatheter left atrial appendage closure efficiency and outcomes. КАРДИОЛОГИЯ УЗБЕКИСТАНА. 2023;16(6):655-666. doi:10.1016/j.jcin.2023.01.008
11.Adedinsewo DA, Morales-Lara AC, Afolabi BB, et al. Author Correction: Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nature Medicine. Published online February 4, 2025. doi:10.1038/s41591-025-03554-5
12.Chen J, Gao Y. The Role of Deep Learning-Based Echocardiography in the Diagnosis and Evaluation of the Effects of Routine Anti-Heart-Failure Western Medicines in Elderly Patients with Acute Left Heart Failure. Journal of Healthcare Engineering. 2021;2021:1-9. doi:10.1155/2021/4845792
13.Kobayashi M, Huttin O, Magnusson M, et al. Machine Learning-Derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals. JACC Cardiovascular Imaging. 2021;15(2):193-208. doi:10.1016/j.jcmg.2021.07.004
14.Sartoretti T, Gennari AG, Sartoretti E, et al. Fully automated deep learning powered calcium scoring in patients undergoing myocardial perfusion imaging. Journal of Nuclear Cardiology. 2022;30(1):313-320. doi:10.1007/s12350-022-02940-7
15.Jonas R, Earls J, Marques H, et al. Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence. Open Heart. 2021;8(2):e001832. doi:10.1136/openhrt-2021-001832
16.Geng Z, Chen B, Li Q, Han X, Zhu X. Efficacy of Morphine Combined with Mechanical Ventilation in the Treatment of Heart Failure with Cardiac Magnetic Resonance Imaging under Artificial Intelligence Algorithms. Contrast Media & Molecular Imaging. 2022;2022(1). doi:10.1155/2022/1732915
17.Knott KD, Seraphim A, Augusto JB, et al. The Prognostic Significance of quantitative myocardial perfusion: an artificial intelligence based approach using perfusion mapping. Circulation. Published online February 14, 2020. doi:10.1161/circulationaha.119.044666
18.Yao X, Rushlow D, Inselman J, et al. Artificial Intelligence‐Enhanced ECG Identification of low Ejection Fraction: A pragmatic, Cluster‐Randomized clinical trial. Health Services Research. 2021;56(S2):28-29. doi:10.1111/1475-6773.13757
19.Yamamoto T, Sugizaki Y, Kawamori H, et al. Enhanced Plaque Stabilization Effects of Alirocumab ― Insights From Artificial Intelligence-Aided Optical Coherence Tomography Analysis of the Alirocumab for Thin-Cap Fibroatheroma in Patients With Coronary Artery Disease Estimated by Optical Coherence Tomography (ALTAIR) Study ―. Circulation Journal. 2024;88(11):1809-1818. doi:10.1253/circj.cj-24-0480
20.Cho H, Kang SJ, Min HS, et al. Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease. Atherosclerosis. 2021;324:69-75. doi:10.1016/j.atherosclerosis.2021.03.037
21.Min HS, Ryu D, Kang SJ, et al. Prediction of coronary stent underexpansion by Pre-Procedural Intravascular Ultrasound–Based Deep Learning. КАРДИОЛОГИЯ УЗБЕКИСТАНА. 2021;14(9):1021-1029. doi:10.1016/j.jcin.2021.01.033
22.Kagiyama N, Piccirilli M, Yanamala N, et al. Machine learning assessment of left ventricular diastolic function based on electrocardiographic features. Journal of the American College of Cardiology. 2020;76(8):930-941. doi:10.1016/j.jacc.2020.06.061
23.Cheng X, Han W, Liang Y, et al. Risk Prediction of Coronary Artery Stenosis in Patients with Coronary Heart Disease Based on Logistic Regression and Artificial Neural Network. Computational and Mathematical Methods in Medicine. 2022;2022:1-8. doi:10.1155/2022/3684700
24.Baskaran L, Ying X, Xu Z, et al. Machine learning insight into the role of imaging and clinical variables for the prediction of obstructive coronary artery disease and revascularization: An exploratory analysis of the CONSERVE study. PLoS ONE. 2020;15(6):e0233791. doi:10.1371/journal.pone.0233791
25.Lin S, Li Z, Fu B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. European Heart Journal. 2020;41(46):4400-4411. doi:10.1093/eurheartj/ehaa640
26.Misumi Y, Miyagawa S, Yoshioka D, et al. Prediction of aortic valve regurgitation after continuous-flow left ventricular assist device implantation using artificial intelligence trained on acoustic spectra. Journal of Artificial Organs. 2021;24(2):164-172. doi:10.1007/s10047-020-01243-3
27.Gálvez-Barrón C, Pérez-López C, Villar-Álvarez F, et al. Machine learning for the development of diagnostic models of decompensated heart failure or exacerbation of chronic obstructive pulmonary disease. Scientific Reports. 2023;13(1). doi:10.1038/s41598-023-39329-6
28.Kao YT, Huang CY, Fang YA, Liu JC, Chang TH. Machine Learning-Based Prediction of atrial fibrillation Risk using electronic medical records in older aged patients. The American Journal of Cardiology. 2023;198:56-63. doi:10.1016/j.amjcard.2023.03.035
29.Kim M, Kang Y, You SC, et al. Artificial intelligence predicts clinically relevant atrial high-rate episodes in patients with cardiac implantable electronic devices. Scientific Reports. 2022;12(1). doi:10.1038/s41598-021-03914-4
30.Commandeur F, Slomka PJ, Goeller M, et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovascular Research. 2019;116(14):2216-2225. doi:10.1093/cvr/cvz321
31.Wang Y, Hou R, Ni B, Jiang Y, Zhang Y. Development and validation of a prediction model based on machine learning algorithms for predicting the risk of heart failure in middle‐aged and older US people with prediabetes or diabetes. Clinical Cardiology. 2023;46(10):1234-1243. doi:10.1002/clc.24104
32.Li L, Ding L, Zhang Z, et al. Development and Validation of Machine Learning–Based models to predict In-Hospital mortality in Life-Threatening Ventricular Arrhythmias: Retrospective Cohort study. Journal of Medical Internet Research. 2023;25:e47664. doi:10.2196/47664
33.Hae H, Kang SJ, Kim TO, et al. Machine Learning-Based prediction of Post-Treatment ambulatory blood pressure in patients with hypertension. Blood Pressure. 2023;32(1). doi:10.1080/08037051.2023.2209674
34.Yi J, Wang L, Song J, et al. Development of a machine learning-based model for predicting individual responses to antihypertensive treatments. Nutrition Metabolism and Cardiovascular Diseases. Published online March 1, 2024. doi:10.1016/j.numecd.2024.02.014
35.Howell SJ, Stivland T, Stein K, Ellenbogen KA, Tereshchenko LG. Using Machine-Learning for prediction of the response to cardiac resynchronization therapy. JACC Clinical Electrophysiology. 2021;7(12):1505-1515. doi:10.1016/j.jacep.2021.06.009
36.Kianmehr H, Guo J, Lin Y, et al. A machine learning approach identifies modulators of heart failure hospitalization prevention among patients with type 2 diabetes: A revisit to the ACCORD trial. Journal of Diabetes and Its Complications. 2022;36(9):108287. doi:10.1016/j.jdiacomp.2022.108287
37.Oikonomou EK, Spatz ES, Suchard MA, Khera R. Individualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: a post-hoc analysis of randomised clinical trials. The Lancet Digital Health. 2022;4(11):e796-e805. doi:10.1016/s2589-7500(22)00170-4
38.Kim Y, Yoon HJ, Suh J, et al. Artificial Intelligence-Based Fully Automated Quantitative Coronary Angiography versus Optical Coherence Tomography guided PCI (FLASH Trial). КАРДИОЛОГИЯ УЗБЕКИСТАНА. Published online October 1, 2024. doi:10.1016/j.jcin.2024.10.025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Szymon Kopciał, Dawid Piecuch, Edyta Hańczyk, Karolina Kornatowska, Natalia Pawelec, Weronika Mazur

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 19
Number of citations: 0