The Impact of Sleep Disorders on Cardiovascular Risk
DOI:
https://doi.org/10.12775/JEHS.2025.81.59851Keywords
Sleep disorders, cardiovascular risk, insomnia, obstructive sleep apnea, OSAAbstract
Introduction: Sleep disorders are a variety of conditions that disturb the normal sleep-wake cycle. These conditions negatively affect the quality of sleep and the individual’s overall health. These disorders are also associated with high levels of metabolic, neurocognitive, and cardiovascular complications. Given the global prevalence of sleep disorders and cardiovascular disease, understanding their relationship is extremely important given that sleep disorders are increasingly recognized as modifiable risk factors for cardiovascular disease.
Purpose of the study: This review examines the relationship between sleep disorders and cardiovascular risk, particularly emphasizing Mechanisms, Outcomes, and Prevention Strategies.
Materials and methods: A comprehensive literature review was conducted, analyzing 86 studies from the PubMed database (English-language, up to March 2025) that assess the association between sleep disorders and the risk of cardiovascular disease.
Conclusions: Sleep disorders, particularly insomnia and obstructive sleep apnea (OSA), have well-documented associations with increased cardiovascular risk. Evidence supports their role as independent and modifiable contributors to cardiovascular pathophysiology. The mechanisms responsible for their action include autonomic dysregulation, metabolic impairment, endothelial dysfunction, and systemic inflammation. Combining sleep assessment with cardiovascular care, including implementing proven interventions such as cognitive behavioral therapies for insomnia and CPAP therapy for OSA, may be beneficial in reducing morbidity. In addition, addressing determinants of sleep disorders, such as shift work, also seems important. Further research is needed to understand better the association of sleep disorders with cardiovascular risk, to assess long-term treatment effects, and to guide evidence-based integration of sleep medicine with strategies for the prevention and treatment of cardiovascular disease.
References
1. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146(5):1387-1394. https://doi.org/10.1378/chest.14-0970
2. Jaqua EE, Hanna M, Labib W, Moore C, Matossian V. Common Sleep Disorders Affecting Older Adults. Perm J. 2023;27(1):122-132. https://doi.org/10.7812/TPP/22.114
3. Cohen ZL, Eigenberger PM, Sharkey KM, Conroy ML, Wilkins KM. Insomnia and Other Sleep Disorders in Older Adults. Psychiatr Clin North Am. 2022;45(4):717-734. https://doi.org/10.1016/j.psc.2022.07.002
4. Kim JH, Elkhadem AR, Duffy JF. Circadian Rhythm Sleep-Wake Disorders in Older Adults. Sleep Med Clin. 2022;17(2):241-252. https://doi.org/10.1016/j.jsmc.2022.02.003
5. Lennon RP, Claussen KA, Kuersteiner KA. State of the Heart: An Overview of the Disease Burden of Cardiovascular Disease from an Epidemiologic Perspective. Prim Care. 2018;45(1):1-15. https://doi.org/10.1016/j.pop.2017.11.001
6. World Heart Report 2023: Confronting the World’s Number One Killer. Geneva, Switzerland. World Heart Federation. 2023.
7. Karna B, Sankari A, Tatikonda G. Sleep Disorder. [Updated 2023 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK560720/
8. Yeghiazarians Y, Jneid H, Tietjens JR, et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association [published correction appears in Circulation. 2022 Mar 22;145(12):e775. https://doi.org/10.1161/CIR.0000000000000988
9. Regazzetti C, Peraldi P, Grémeaux T, et al. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes. 2009;58(1):95-103. https://doi.org/10.2337/db08-0457
10. Arnaud C, Bochaton T, Pépin JL, Belaidi E. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis. 2020;113(5):350-358. https://doi.org/10.1016/j.acvd.2020.01.003
11. Reutrakul S, Mokhlesi B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest. 2017;152(5):1070-1086. https://doi.org/10.1016/j.chest.2017.05.009
12. Li YE, Ren J. Association between obstructive sleep apnea and cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai). 2022;54(7):882-892. https://doi.org/10.3724/abbs.2022084
13. Lemos V, de Oliveira RM, Naia L, et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet. 2017;26(21):4105-4117 https://doi.org/10.1093/hmg/ddx298
14. Karuga FF, Kaczmarski P, Białasiewicz P, et al. REM-OSA as a Tool to Understand Both the Architecture of Sleep and Pathogenesis of Sleep Apnea-Literature Review. J Clin Med. 2023;12(18):5907. Published 2023 Sep 12. https://doi.org/10.3390/jcm12185907
15. Garvey JF, Taylor CT, McNicholas WT. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J. 2009;33(5):1195-1205. https://doi.org/10.1183/09031936.00111208
16. Krieger J, Sforza E, Boudewijns A, Zamagni M, Petiau C. Respiratory effort during obstructive sleep apnea: role of age and sleep state. Chest. 1997;112(4):875-884. https://doi.org/10.1378/chest.112.4.875
17. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897-1904. https://doi.org/10.1172/JCI118235
18. Tamisier R, Pépin JL, Rémy J, et al. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur Respir J. 2011;37(1):119-128. https://doi.org/10.1183/09031936.00204209
19. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993;103(6):1763-1768. https://doi.org/10.1378/chest.103.6.1763
20. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97(10):943-945. https://doi.org/10.1161/01.cir.97.10.943
21. McEvoy JW, McCarthy CP, Bruno RM, et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension [published correction appears in Eur Heart J. 2025 Feb 11:ehaf031. doi: 10.1093/eurheartj/ehaf031.]. Eur Heart J. 2024;45(38):3912-4018. https://doi.org/10.1093/eurheartj/ehae178
22. Nguyen, Duy & Hoang, Ca & Huynh, Phat & Truong, Tien & Nguyen, Đang & Sharma, Abhay & Le, Trung. (2024). Multi-level Phenotypic Models of Cardiovascular Disease and Obstructive Sleep Apnea Comorbidities: A Longitudinal Wisconsin Sleep Cohort Study. 10.13140/RG.2.2.17741.04327.
23. Stanek A, Brożyna-Tkaczyk K, Myśliński W. Oxidative Stress Markers among Obstructive Sleep Apnea Patients. Oxid Med Cell Longev. 2021;2021:9681595. Published 2021 Jul 19. https://doi.org/10.1155/2021/9681595
24. Pappas G, Gow A, Punjabi NM, Aurora RN. Sex-specific differences in overnight nitrate levels in persons with obstructive sleep apnea and type 2 diabetes. Sleep Med. 2025;128:159-164 https://doi.org/10.1016/j.sleep.2025.02.011
25. Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177(4):369-375. https://doi.org/10.1164/rccm.200608-1190PP
26. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF. Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun. 2006;343(2):591-596. https://doi.org/10.1016/j.bbrc.2006.03.015
27. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986;47(6):921-928. https://doi.org/10.1016/0092-8674(86)90807-x
28. Miller MA, Howarth NE. Sleep and cardiovascular disease. Emerg Top Life Sci. 2023;7(5):457-466. https://doi.org/10.1042/ETLS20230111
29. Javaheri S, Redline S. Insomnia and Risk of Cardiovascular Disease. Chest. 2017;152(2):435-444. https://doi.org/10.1016/j.chest.2017.01.026
30. Iob E, Steptoe A. Cardiovascular Disease and Hair Cortisol: a Novel Biomarker of Chronic Stress. Curr Cardiol Rep. 2019;21(10):116. Published 2019 Aug 30. https://doi.org/10.1007/s11886-019-1208-7
31. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR), Fifth edition - Text Rivision. 2022.
32. Wolk R, Somers VK. Sleep and the metabolic syndrome. Exp Physiol. 2007;92(1):67-78. https://doi.org/10.1113/expphysiol.2006.033787
33. Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev. 2010;17:11-21. https://doi.org/10.1159/000262524
34. Greenlund IM, Carter JR. Sympathetic neural responses to sleep disorders and insufficiencies. Am J Physiol Heart Circ Physiol. 2022;322(3):H337-H349. https://doi.org/10.1152/ajpheart.00590.2021
35. Carreras A, Zhang SX, Peris E, et al. Chronic sleep fragmentation induces endothelial dysfunction and structural vascular changes in mice. Sleep. 2014;37(11):1817-1824. Published 2014 Nov 1. https://doi.org/10.5665/sleep.4178
36. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol. 2015;66:143-172. https://doi.org/10.1146/annurev-psych-010213-115205
37. Javaheri S, Redline S. Insomnia and Risk of Cardiovascular Disease. Chest. 2017;152(2):435-444. https://doi.org/10.1016/j.chest.2017.01.026
38. Li M, Zhang XW, Hou WS, Tang ZY. Insomnia and risk of cardiovascular disease: a meta-analysis of cohort studies. Int J Cardiol. 2014;176(3):1044-1047.https://doi.org/10.1016/j.ijcard.2014.07.284
39. Sofi F, Cesari F, Casini A, Macchi C, Abbate R, Gensini GF. Insomnia and risk of cardiovascular disease: a meta-analysis. Eur J Prev Cardiol. 2014;21(1):57-64. https://doi.org/10.1177/2047487312460020
40. Frøjd LA, Munkhaugen J, Moum T, et al. Insomnia in patients with coronary heart disease: prevalence and correlates. J Clin Sleep Med. 2021;17(5):931-938. https://doi.org/10.5664/jcsm.9082
41. Laugsand LE, Vatten LJ, Platou C, Janszky I. Insomnia and the risk of acute myocardial infarction: a population study. Circulation. 2011;124(19):2073-2081. https://doi.org/10.1161/CIRCULATIONAHA.111.025858
42. Laugsand LE, Strand LB, Platou C, Vatten LJ, Janszky I. Insomnia and the risk of incident heart failure: a population study. Eur Heart J. 2014;35(21):1382-1393. https://doi.org/10.1093/eurheartj/eht019
43. Li C, Shang S, Liang W. Sleep and risk of hypertension in general American adults: the National Health and Nutrition Examination Surveys (2015-2018). J Hypertens. 2023;41(1):63-73. https://doi.org/10.1097/HJH.0000000000003299
44. Li L, Gan Y, Zhou X, et al. Insomnia and the risk of hypertension: A meta-analysis of prospective cohort studies. Sleep Med Rev. 2021;56:101403. https://doi.org/10.1016/j.smrv.2020.101403
45. Gangwisch JE, Heymsfield SB, Boden-Albala B, et al. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension. 2006;47(5):833-839. https://doi.org/10.1161/01.HYP.0000217362.34748.e0
46. Olfson M, Wall M, Liu SM, Morin CM, Blanco C. Insomnia and Impaired Quality of Life in the United States. J Clin Psychiatry. 2018;79(5):17m12020. Published 2018 Sep 11. https://doi.org/10.4088/JCP.17m12020
47. Wang C, Hao G, Bo J, Li W. Correlations between sleep patterns and cardiovascular diseases in a Chinese middle-aged population. Chronobiol Int. 2017;34(5):601-608. https://doi.org/10.1080/07420528.2017.1285785
48. Yan B, Li J, Li R, Gao Y, Zhang J, Wang G. Association of daytime napping with incident cardiovascular disease in a community-based population. Sleep Med. 2019;57:128-134. https://doi.org/10.1016/j.sleep.2019.02.014
49. Li X, Pang X, Liu Z, et al. Joint effect of less than 1 h of daytime napping and seven to 8 h of night sleep on the risk of stroke. Sleep Med. 2018;52:180-187. https://doi.org/10.1016/j.sleep.2018.05.011
50. Yang L, Yang H, He M, et al. Longer Sleep Duration and Midday Napping Are Associated with a Higher Risk of CHD Incidence in Middle-Aged and Older Chinese: the Dongfeng-Tongji Cohort Study. Sleep. 2016;39(3):645-652. Published 2016 Mar 1. https://doi.org/10.5665/sleep.5544
51. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A. 2008;105(3):1044-1049. https://doi.org/10.1073/pnas.0706446105
52. Wiesner CD, Davoli V, Schürger D, Prehn-Kristensen A, Baving L. Melatonin Secretion during a Short Nap Fosters Subsequent Feedback Learning. Front Hum Neurosci. 2018;11:648. Published 2018 Jan 10. https://doi.org/10.3389/fnhum.2017.00648
53. Woods DL, Kim H, Yefimova M. To nap or not to nap: excessive daytime napping is associated with elevated evening cortisol in nursing home residents with dementia. Biol Res Nurs. 2013;15(2):185-190. https://doi.org/10.1177/1099800411420861
54. Pan Z, Huang M, Huang J, Yao Z, Lin Z. Association of napping and all-cause mortality and incident cardiovascular diseases: a dose-response meta analysis of cohort studies. Sleep Med. 2020;74:165-172. https://doi.org/10.1016/j.sleep.2020.08.009
55. Chen J, Chen J, Zhu T, et al. Causal relationships of excessive daytime napping with atherosclerosis and cardiovascular diseases: a Mendelian randomization study. Sleep. 2023;46(1):zsac257. https://doi.org/10.1093/sleep/zsac257
56. van Leeuwen WM, Lehto M, Karisola P, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One. 2009;4(2):e4589. https://doi.org/10.1371/journal.pone.0004589
57. Mednick SC, Nakayama K, Cantero JL, et al. The restorative effect of naps on perceptual deterioration. Nat Neurosci. 2002;5(7):677-681. https://doi.org/10.1038/nn864
58. Lovato N, Lack L. The effects of napping on cognitive functioning. Prog Brain Res. 2010;185:155-166. https://doi.org/10.1016/B978-0-444-53702-7.00009-9
59. Miller MA, Howarth NE. Sleep and cardiovascular disease. Emerg Top Life Sci. 2023;7(5):457-466. https://doi.org/10.1042/ETLS20230111
60. Chang JL, Goldberg AN, Alt JA, et al. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol. 2023;13(7):1061-1482. https://doi.org/10.1002/alr.23079
61. Salman LA, Shulman R, Cohen JB. Obstructive Sleep Apnea, Hypertension, and Cardiovascular Risk: Epidemiology, Pathophysiology, and Management. Curr Cardiol Rep. 2020;22(2):6. Published 2020 Jan 18. https://doi.org/10.1007/s11886-020-1257-y
62. Acharya R, Basnet S, Tharu B, et al. Obstructive Sleep Apnea: Risk Factor for Arrhythmias, Conduction Disorders, and Cardiac Arrest. Cureus. 2020;12(8):e9992. Published 2020 Aug 24. https://doi.org/10.7759/cureus.9992
63. Heilbrunn ES, Ssentongo P, Chinchilli VM, Oh J, Ssentongo AE. Sudden death in individuals with obstructive sleep apnoea: a systematic review and meta-analysis. BMJ Open Respir Res. 2021;8(1):e000656. https://doi.org/10.1136/bmjresp-2020-000656
64. Tong J, Yu Q, Li Y, Du J, Qiu J. Obstructive sleep apnea and cardiovascular events in acute coronary syndrome: a meta-analysis. Coron Artery Dis. 2023;34(3):177-184. https://doi.org/10.1097/MCA.0000000000001207
65. Lee G, Dharmakulaseelan L, Muir RT, Iskander C, Kendzerska T, Boulos MI. Obstructive sleep apnea is associated with markers of cerebral small vessel disease in a dose-response manner: A systematic review and meta-analysis. Sleep Med Rev. 2023;68:101763.https://doi.org/10.1016/j.smrv.2023.101763
66. Acharya R, Basnet S, Tharu B, et al. Obstructive Sleep Apnea: Risk Factor for Arrhythmias, Conduction Disorders, and Cardiac Arrest. Cureus. 2020;12(8):e9992. Published 2020 Aug 24. https://doi.org/10.7759/cureus.9992
67. Doherty LS, Kiely JL, Swan V, McNicholas WT. Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest. 2005;127(6):2076-2084. https://doi.org/10.1378/chest.127.6.2076
68. Raghuram A, Clay R, Kumbam A, Tereshchenko LG, Khan A. A systematic review of the association between obstructive sleep apnea and ventricular arrhythmias. J Clin Sleep Med. 2014;10(10):1155-1160. Published 2014 Oct 15. https://doi.org/10.5664/jcsm.4126
69. Aytemir K, Deniz A, Yavuz B, et al. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome. Respir Med. 2007;101(6):1277-1282. https://doi.org/10.1016/j.rmed.2006.10.016
70. Gami AS, Olson EJ, Shen WK, et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol. 2013;62(7):610-616. https://doi.org/10.1016/j.jacc.2013.04.080
71. Camen G, Clarenbach CF, Stöwhas AC, et al. The effects of simulated obstructive apnea and hypopnea on arrhythmic potential in healthy subjects. Eur J Appl Physiol. 2013;113(2):489-496. https://doi.org/10.1007/s00421-012-2457-y
72. Roche F, Xuong AN, Court-Fortune I, et al. Relationship among the severity of sleep apnea syndrome, cardiac arrhythmias, and autonomic imbalance. Pacing Clin Electrophysiol. 2003;26(3):669-677. https://doi.org/10.1046/j.1460-9592.2003.00116.x
73. Becker HF, Koehler U, Stammnitz A, Peter JH. Heart block in patients with sleep apnoea. Thorax. 1998;53 Suppl 3(Suppl 3):S29-S32. https://doi.org/10.1136/thx.53.2008.s29
74. Salman LA, Shulman R, Cohen JB. Obstructive Sleep Apnea, Hypertension, and Cardiovascular Risk: Epidemiology, Pathophysiology, and Management. Curr Cardiol Rep. 2020;22(2):6. Published 2020 Jan 18. https://doi.org/10.1007/s11886-020-1257-y
75. Hou H, Zhao Y, Yu W, et al. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J Glob Health. 2018;8(1):010405. https://doi.org/10.7189/jogh.08.010405
76. Pedrosa RP, Drager LF, Gonzaga CC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension. 2011;58(5):811-817. https://doi.org/10.1161/HYPERTENSIONAHA.111.179788
77. Martínez-García MA, Navarro-Soriano C, Torres G, et al. Beyond Resistant Hypertension. Hypertension. 2018;72(3):618-624. https://doi.org/10.1161/HYPERTENSIONAHA.118.11170
78. Foster GE, Brugniaux JV, Pialoux V, et al. Cardiovascular and cerebrovascular responses to acute hypoxia following exposure to intermittent hypoxia in healthy humans. J Physiol. 2009;587(Pt 13):3287-3299. https://doi.org/10.1113/jphysiol.2009.171553
79. Jin ZN, Wei YX. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J Geriatr Cardiol. 2016;13(4):333-343. https://doi.org/10.11909/j.issn.1671-5411.2016.03.020
80. Foster GE, Hanly PJ, Ahmed SB, Beaudin AE, Pialoux V, Poulin MJ. Intermittent hypoxia increases arterial blood pressure in humans through a Renin-Angiotensin system-dependent mechanism. Hypertension. 2010;56(3):369-377. https://doi.org/10.1161/HYPERTENSIONAHA.110.152108
81. Kheirandish-Gozal L, Gozal D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int J Mol Sci. 2019;20(3):459. Published 2019 Jan 22. https://doi.org/10.3390/ijms20030459
82. Testelmans D, Tamisier R, Barone-Rochette G, et al. Profile of circulating cytokines: impact of OSA, obesity and acute cardiovascular events. Cytokine. 2013;62(2):210-216. https://doi.org/10.1016/j.cyto.2013.02.021
83. Nadeem R, Molnar J, Madbouly EM, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med. 2013;9(10):1003-1012. Published 2013 Oct 15. https://doi.org/10.5664/jcsm.3070
84. Seicean S, Kirchner HL, Gottlieb DJ, et al. Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the Sleep Heart Health Study. Diabetes Care. 2008;31(5):1001-1006. https://doi.org/10.2337/dc07-2003
85. Jaqua EE, Hanna M, Labib W, Moore C, Matossian V. Common Sleep Disorders Affecting Older Adults. Perm J. 2023;27(1):122-132. https://doi.org/10.7812/TPP/22.114
86. Maiolino G, Bisogni V, Silvani A, Pengo MF, Lombardi C, Parati G. Treating sleep disorders to improve blood pressure control and cardiovascular prevention: a dream come true?-a narrative review. J Thorac Dis. 2020;12(Suppl 2):S225-S234. https://doi.org/10.21037/jtd-cus-2020-014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anna Blazhkova , Dominka Rehan, Katarzyna Rzym , Sven Solisch, Anna Susłow, Ewa Szczęsna, Adam Szwed

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 304
Number of citations: 0