CAR-T Cell Therapy in Gastrointestinal Cancer, Head and Neck Cancer, and Autoimmune Diseases: Current Advances and Future Perspectives
DOI:
https://doi.org/10.12775/JEHS.2025.81.59839Keywords
CAR-T, Chimeric Antigen Receptor, Head and Neck Cancer, Systemic Lupus Erythematosus, Immunotherapy, Gastrointestinal tumorsAbstract
Introduction: Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment, showing significant success in hematologic malignancies. However, its application in solid tumors like gastrointestinal (GI) and head and neck cancers, as well as autoimmune diseases, remains a challenge. The development of CAR-T cell therapy for these indications presents unique difficulties, including tumor heterogeneity, antigen specificity, and immune suppression within the tumor microenvironment.
Aim of the study: This review aims to provide an in-depth analysis of the current advancements in CAR-T cell therapy for gastrointestinal cancer, head and neck cancer, and autoimmune diseases. We seek to evaluate the therapeutic potential, current challenges, and future directions of CAR-T cell-based interventions in these conditions.
Materials and methods: We performed a comprehensive literature review, analyzing recent clinical trials, preclinical studies, and research published in PubMed and Google Scholar. We focused on CAR-T cell therapy targeting solid tumors and autoimmune diseases, current treatment options, clinical efficacy, and safety concerns across these therapeutic areas.
Conclusions: CAR-T cell therapy has shown promising potential in the treatment of gastrointestinal cancers, head and neck cancers, and autoimmune diseases, but its clinical application remains limited by challenges such as antigen escape, off-tumor toxicity, and insufficient T-cell persistence. Future studies must focus on improving CAR design, enhancing targeting accuracy, and addressing the immunosuppressive tumor environment to unlock the full therapeutic potential of CAR-T cells for these indications.
References
1. Sadelain M. CAR therapy: the CD19 paradigm. Journal of Clinical Investigation. 2015;125(9):3392-3400. doi:10.1172/JCI80010
2. Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front Immunol. 2022;13:927153. doi:10.3389/fimmu.2022.927153
3. Leukapheresis for CAR-T cell production and therapy. doi:10.1016/j.transci.2023.103828
4. Sadelain M, Brentjens R, Rivière I. The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discovery. 2013;3(4):388-398. doi:10.1158/2159-8290.CD-12-0548
5. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Current Opinion in Immunology. 2015;33:9-15. doi:10.1016/j.coi.2015.01.002
6. Globerson Levin A, Rivière I, Eshhar Z, Sadelain M. CAR T cells: Building on the CD19 paradigm. Eur J Immunol. 2021;51(9):2151-2163. doi:10.1002/eji.202049064
7. Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol. 2023;14:1188049. doi:10.3389/fimmu.2023.1188049
8. Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35-45. doi:10.1038/nrc971
9. Saiz LC, Leache L, Gutiérrez-Valencia M, Erviti J, Rojas Reyes MX. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies: a living systematic review on comparative studies. Therapeutic Advances in Hematology. 2023;14:20406207231168211. doi:10.1177/20406207231168211
10. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024-10028. doi:10.1073/pnas.86.24.10024
11. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N Engl J Med. 2011;365(8):725-733. doi:10.1056/NEJMoa1103849
12. Roshandel G, Ghasemi-Kebria F, Malekzadeh R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers. 2024;16(8):1530. doi:10.3390/cancers16081530
13. Demographics of Lativa. Accessed March 20, 2025. https://en.wikipedia.org/wiki/Demographics_of_Latvia
14. Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Molecular Therapy. Published online 2016.
15. Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer. 2018;17(1):7. doi:10.1186/s12943-018-0759-3
16. Kreso A, Dick JE. Evolution of the Cancer Stem Cell Model. Cell Stem Cell. 2014;14(3):275-291. doi:10.1016/j.stem.2014.02.006
17. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313-319. doi:10.1038/nm.2304
18. Barker N, Tan S, Clevers H. Lgr proteins in epithelial stem cell biology. Development. 2013;140(12):2484-2494. doi:10.1242/dev.083113
19. Barker N, Van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003-1007. doi:10.1038/nature06196
20. Merlos-Suárez A, Barriga FM, Jung P, et al. The Intestinal Stem Cell Signature Identifies Colorectal Cancer Stem Cells and Predicts Disease Relapse. Cell Stem Cell. 2011;8(5):511-524. doi:10.1016/j.stem.2011.02.020
21. Cepero A, Jiménez-Carretero M, Jabalera Y, et al. LGR5 as a Therapeutic Target of Antibody-Functionalized Biomimetic Magnetoliposomes for Colon Cancer Therapy. IJN. 2024;Volume 19:1843-1865. doi:10.2147/IJN.S440881
22. In vivo characterization of a novel CAR-T cell therapy directed towards LGR5 for the treatment of colorectal cancer. https://aacrjournals.org/cancerres/article/82/12_Supplement/5574/701344/Abstract-5574-In-vivo-characterization-of-a-novel
23. Adjuvant treatment of surgically resectable pancreatic ductal adenocarcinoma. https://pubmed.ncbi.nlm.nih.gov/30843899/
24. Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol. 2021;18(11):804-823. doi:10.1038/s41575-021-00486-6
25. Yuan Y, Fan J, Liang D, et al. Cell surface GRP78-directed CAR-T cells are effective at treating human pancreatic cancer in preclinical models. Translational Oncology. 2024;39:101803. doi:10.1016/j.tranon.2023.101803
26. Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14(4):263-276. doi:10.1038/nrc3701
27. Early detection of pancreatic cancer by a high-throughput protease-activated nanosensor assay. https://www.science.org/doi/abs/10.1126/scitranslmed.adq3110
28. Guizhen Z, Guanchang J, Liwen L, et al. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol. 2022;13:918869. doi:10.3389/fendo.2022.918869
29. Patra T, Cunningham DM, Meyer K, et al. Targeting Lin28 axis enhances glypican-3-CAR T cell efficacy against hepatic tumor initiating cell population. Molecular Therapy. 2023;31(3):715-728. doi:10.1016/j.ymthe.2023.01.002
30. Bębnowska D, Grywalska E, Niedźwiedzka-Rystwej P, et al. CAR-T Cell Therapy—An Overview of Targets in Gastric Cancer. JCM. 2020;9(6):1894. doi:10.3390/jcm9061894
31. Feng Q, Sun B, Xue T, et al. Advances in CAR T-cell therapy in bile duct, pancreatic, and gastric cancers. Front Immunol. 2022;13:1025608. doi:10.3389/fimmu.2022.1025608
32. Parmar K, Mohamed A, Vaish E, Thawani R, Cetnar J, Thein KZ. Immunotherapy in head and neck squamous cell carcinoma: An updated review. Cancer Treatment and Research Communications. 2022;33:100649. doi:10.1016/j.ctarc.2022.100649
33. Yu C, Li Q, Zhang Y, Wen ZF, Dong H, Mou Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front Cell Dev Biol. 2022;10:941750. doi:10.3389/fcell.2022.941750
34. Wang HQ, Fu R, Man QW, Yang G, Liu B, Bu LL. Advances in CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinoma. JCM. 2023;12(6):2173. doi:10.3390/jcm12062173
35. Mei Z, Zhang K, Lam AK, et al. MUC1 as a target for CAR‐T therapy in head and neck squamous cell carinoma. Cancer Medicine. 2020;9(2):640-652. doi:10.1002/cam4.2733
36. Papa S, Adami A, Metoudi M, et al. Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study. J Immunother Cancer. 2023;11(6):e007162. doi:10.1136/jitc-2023-007162
37. Park YP, Jin L, Bennett KB, et al. CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma. Oral Oncology. 2018;78:145-150. doi:10.1016/j.oraloncology.2018.01.024
38. Hu C, Liu M, Li Y, et al. Recent advances and future perspectives of CAR-T cell therapy in head and neck cancer. Front Immunol. 2023;14:1213716. doi:10.3389/fimmu.2023.1213716
39. Haist C, Schulte E, Bartels N, et al. CD44v6-targeted CAR T-cells specifically eliminate CD44 isoform 6 expressing head/neck squamous cell carcinoma cells. Oral Oncology. 2021;116:105259. doi:10.1016/j.oraloncology.2021.105259
40. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Current Opinion in Immunology. 2023;80:102266. doi:10.1016/j.coi.2022.102266
41. Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med. 2019;11(482):eaav1648. doi:10.1126/scitranslmed.aav1648
42. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. n engl j med. Published online 2021.
43. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. https://www.nature.com/articles/s41591-022-02017-5#ethics
44. OP0141 LONG TERM SAFETY AND EFFICACY OF CAR-T CELL TREATMENT IN REFRACTORY SYSTEMIC LUPUS ERYTHEMATOSUS - DATA FROM THE FIRST SEVEN PATIENTS. https://ard.eular.org/article/S0003-4967(24)63596-X/abstract
45. Müller F, Taubmann J, Bucci L, et al. CD19 CAR T-Cell Therapy in Autoimmune Disease — A Case Series with Follow-up. N Engl J Med. 2024;390(8):687-700. doi:10.1056/NEJMoa2308917
46. Hawkins ER, D’Souza RR, Klampatsa A. Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. BTT. 2021;Volume 15:95-105. doi:10.2147/BTT.S291768
47. Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacology & Therapeutics. 2017;178:83-91. doi:10.1016/j.pharmthera.2017.03.012
48. Salas-Mckee J, Kong W, Gladney WL, et al. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Human Vaccines & Immunotherapeutics. 2019;15(5):1126-1132. doi:10.1080/21645515.2019.1571893
49. Song P, Zhang Q, Xu Z, Shi Y, Jing R, Luo D. CRISPR/Cas-based CAR-T cells: production and application. Biomark Res. 2024;12(1):54. doi:10.1186/s40364-024-00602-z
50. Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Cancer Cell. 2019;36(5):471-482. doi:10.1016/j.ccell.2019.09.006
51. Regulatory landscape and challenges in CAR-T cell therapy development in the US, EU, Japan, and India. https://doi.org/10.1016/j.ejpb.2024.114361
52. Levine BL, Miskin J, Wonnacott K, Keir C. Global Manufacturing of CAR T Cell Therapy. Molecular Therapy - Methods & Clinical Development. 2017;4:92-101. doi:10.1016/j.omtm.2016.12.006
53. Luo L, Zhou X, Zhou L, et al. Current state of CAR-T therapy for T-cell malignancies. Therapeutic Advances in Hematology. 2022;13:20406207221143025. doi:10.1177/20406207221143025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Martyna Kania, Hanna Bartkowiak , Damian Grubski, Agnieszka Adamowska, Filip Nadolny, Julia Janecka, Jędrzej Jabłoński, Alicja Śniatała, Michał Hofman, Adam Dudek

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 161
Number of citations: 0