Stronger Together: How GLP-1 RAs and SGLT-2 Inhibitors Revolutionize Type 2 Diabetes Treatment
DOI:
https://doi.org/10.12775/JEHS.2025.80.59642Keywords
Drug Therapy, Combination, Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Transporter 2 Inhibitors, Diabetes Mellitus, Type 2, Heart Disease Risk FactorsAbstract
Introduction: Type 2 diabetes affects approximately 462 million people worldwide. The condition is associated with complex pathophysiology that leads to impaired glucose regulation and the development of both macrovascular and microvascular complications. The economic burden is significant, with high treatment costs and lost productivity due to complications and premature mortality. Current guidelines recommend using glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 (SGLT-2) inhibitors in combination for patients at high risk for cardiovascular disease or chronic kidney disease. These treatments have been shown in multiple meta-analyses to reduce the risk of major cardiovascular events, mortality, myocardial infarction, renal failure, and severe hyperglycaemia.
Purpose: This review examines the impact of combining GLP-1 receptor agonists and SGLT-2 inhibitors in patients with type 2 diabetes, with a particular focus on cardiovascular risk.
Materials and methods: The review analyzed PubMed articles published in the past 10 years, including clinical studies that assessed the effects of combination therapy with GLP-1 receptor agonists and SGLT-2 inhibitors in patients with type 2 diabetes.
Summary: Research indicates that the combination of GLP-1 receptor agonists and SGLT-2 inhibitors leads to improved glycaemic control, better lipid management, lower blood pressure, and reduced body weight. It also improves vascular and myocardial health markers, while reducing cardiovascular risk. Although this combination therapy benefits kidney health, certain areas remain unchanged. Considering all of this, combination therapy seems to be a promising treatment, offering greater benefits than other antidiabetic therapies.
References
1. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why Does Obesity Cause Diabetes? Cell Metab. 2022;34(1):11-20. doi:10.1016/j.cmet.2021.12.012
2. Hamilton MT, Hamilton DG, Zderic TW. Sedentary behavior as a mediator of type 2 diabetes. Med Sport Sci. 2014;60:11-26. doi:10.1159/000357332
3. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10(1):107-111. doi:10.2991/jegh.k.191028.001
4. American Diabetes Association. Economic costs of diabetes in the U.S. In 2007. Diabetes Care. 2008;31(3):596-615. doi:10.2337/dc08-9017
5. Herquelot E, Guéguen A, Bonenfant S, Dray-Spira R. Impact of Diabetes on Work Cessation. Diabetes Care. 2011;34(6):1344-1349. doi:10.2337/dc10-2225
6. Farmaki P, Damaskos C, Garmpis N, Garmpi A, Savvanis S, Diamantis E. Complications of the Type 2 Diabetes Mellitus. Curr Cardiol Rev. 2020;16(4):249-251. doi:10.2174/1573403X1604201229115531
7. American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care. 2023;47(Supplement_1):S158-S178. doi:10.2337/dc24-S009
8. American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care. 2023;47(Supplement_1):S179-S218. doi:10.2337/dc24-S010
9. Das SR, Everett BM, Birtcher KK, et al. 2020 Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes. J Am Coll Cardiol. 2020;76(9):1117-1145. doi:10.1016/j.jacc.2020.05.037
10. Zelniker TA, Wiviott SD, Raz I, et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation. 2019;139(17):2022-2031. doi:10.1161/CIRCULATIONAHA.118.038868
11. Palmer SC, Tendal B, Mustafa RA, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. The BMJ. 2021;372:m4573. doi:10.1136/bmj.m4573
12. DeFronzo RA. The Triumvirate: β-Cell, Muscle, Liver: A Collusion Responsible for NIDDM. Diabetes. 1988;37(6):667-687. doi:10.2337/diab.37.6.667
13. Halban PA, Polonsky KS, Bowden DW, et al. β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment. Diabetes Care. 2014;37(6):1751-1758. doi:10.2337/dc14-0396
14. Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2001;109 Suppl 2:S135-148. doi:10.1055/s-2001-18576
15. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12-22. doi:10.1172/JCI77812
16. Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci. 2017;38(7):649-665. doi:10.1016/j.tips.2017.04.004
17. DeFronzo RA, Tripathy D. Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes. Diabetes Care. 2009;32(Suppl 2):S157-S163. doi:10.2337/dc09-S302
18. Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother Biomedecine Pharmacother. 2021;137:111315. doi:10.1016/j.biopha.2021.111315
19. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care. 2008;31 Suppl 2:S262-268. doi:10.2337/dc08-s264
20. Turner RC, Mathews DR, Holman RR, Peto J. Relative contributions of insulin deficiency and insulin resistance in maturity-onset diabetes. Lancet Lond Engl. 1982;1(8272):596-598. doi:10.1016/s0140-6736(82)91753-6
21. DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic Approach to Therapy in Patients With Newly Diagnosed Type 2 Diabetes. Diabetes Care. 2013;36(Suppl 2):S127-S138. doi:10.2337/dcS13-2011
22. Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and Type 2 Diabetes: What Can Be Unified and What Needs to Be Individualized? Diabetes Care. 2011;34(6):1424-1430. doi:10.2337/dc11-0447
23. Neeland IJ, Turer AT, Ayers MrCR, et al. Dysfunctional Adiposity and the Risk of Prediabetes and Type 2 Diabetes in Obese Adults. JAMA J Am Med Assoc. 2012;308(11):1150-1159. doi:10.1001/2012.jama.11132
24. Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes – An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta BBA - Mol Basis Dis. 2018;1864(11):3805-3823. doi:10.1016/j.bbadis.2018.08.034
25. Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol Rev. 2019;14(1):50-59. doi:10.15420/ecr.2018.33.1
26. Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019;128:94-105. doi:10.1016/j.neuint.2019.04.010
27. Pyke C, Heller RS, Kirk RK, et al. GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed With Extensively Validated Monoclonal Antibody. Endocrinology. 2014;155(4):1280-1290. doi:10.1210/en.2013-1934
28. Cornell S. A review of GLP‐1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once‐weekly agents. J Clin Pharm Ther. 2020;45(Suppl 1):17-27. doi:10.1111/jcpt.13230
29. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. doi:10.1172/JCI990
30. Sandoval D, Sisley SR. Brain GLP-1 and Insulin Sensitivity. Mol Cell Endocrinol. 2015;418 Pt 1:27-32. doi:10.1016/j.mce.2015.02.017
31. Ferrannini E. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metab. 2017;26(1):27-38. doi:10.1016/j.cmet.2017.04.011
32. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diab Vasc Dis Res. 2015;12(2):78-89. doi:10.1177/1479164114561992
33. Vallon V, Platt KA, Cunard R, et al. SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule. J Am Soc Nephrol JASN. 2011;22(1):104-112. doi:10.1681/ASN.2010030246
34. Wang XX, Levi J, Luo Y, et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy. J Biol Chem. 2017;292(13):5335-5348. doi:10.1074/jbc.M117.779520
35. Hsia DS, Grove O, Cefalu WT. An Update on SGLT2 Inhibitors for the Treatment of Diabetes Mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):73-79. doi:10.1097/MED.0000000000000311
36. Patel DK, Strong J. The Pleiotropic Effects of Sodium–Glucose Cotransporter-2 Inhibitors: Beyond the Glycemic Benefit. Diabetes Ther. 2019;10(5):1771-1792. doi:10.1007/s13300-019-00686-z
37. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761-772. doi:10.1038/s41569-020-0406-8
38. American Diabetes Association Professional Practice Committee. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2025. Diabetes Care. 2024;48(Supplement_1):S128-S145. doi:10.2337/dc25-S006
39. Jabbour SA, Frías JP, Ahmed A, et al. Efficacy and Safety Over 2 Years of Exenatide Plus Dapagliflozin in the DURATION-8 Study: A Multicenter, Double-Blind, Phase 3, Randomized Controlled Trial. Diabetes Care. 2020;43(10):2528-2536. doi:10.2337/dc19-1350
40. Ludvik B, Frías JP, Tinahones FJ, et al. Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6(5):370-381. doi:10.1016/S2213-8587(18)30023-8
41. Zinman B, Bhosekar V, Busch R, et al. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): a randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(5):356-367. doi:10.1016/S2213-8587(19)30066-X
42. Harashima S, Inagaki N, Kondo K, et al. Efficacy and safety of canagliflozin as add‐on therapy to a glucagon‐like peptide‐1 receptor agonist in Japanese patients with type 2 diabetes mellitus: A 52‐week, open‐label, phase IV study. Diabetes Obes Metab. 2018;20(7):1770-1775. doi:10.1111/dom.13267
43. Seino Y, Yabe D, Sasaki T, et al. Sodium‐glucose cotransporter‐2 inhibitor luseogliflozin added to glucagon‐like peptide 1 receptor agonist liraglutide improves glycemic control with bodyweight and fat mass reductions in Japanese patients with type 2 diabetes: A 52‐week, open‐label, single‐arm study. J Diabetes Investig. 2018;9(2):332-340. doi:10.1111/jdi.12694
44. Berra C, Manfrini R, Bifari F, et al. Improved glycemic and weight control with Dulaglutide addition in SGLT2 inhibitor treated obese type 2 diabetic patients at high cardiovascular risk in a real-world setting. The AWARE−2 study. Pharmacol Res. 2024;210:107517. doi:10.1016/j.phrs.2024.107517
45. Saroka RM, Kane MP, Busch RS, Watsky Jay, Hamilton RA. SGLT-2 Inhibitor Therapy Added to GLP-1 Agonist Therapy in the Management of T2DM. Endocr Pract. 2015;21(12):1315-1322. doi:10.4158/EP15877.OR
46. Cersosimo E, Alatrach M, Solis-Herrera C, et al. Emergence of a New Glucoregulatory Mechanism for Glycemic Control With Dapagliflozin/Exenatide Therapy in Type 2 Diabetes. J Clin Endocrinol Metab. 2024;109(1):161-170. doi:10.1210/clinem/dgad438
47. Arnott C, Neuen BL, Heerspink HJL, et al. The effects of combination canagliflozin and glucagon-like peptide-1 receptor agonist therapy on intermediate markers of cardiovascular risk in the CANVAS program. Int J Cardiol. 2020;318:126-129. doi:10.1016/j.ijcard.2020.06.011
48. Katogiannis K, Thymis J, Kousathana F, et al. Effects of Liraglutide, Empagliflozin and Their Combination on Left Atrial Strain and Arterial Function. Medicina (Mex). 2024;60(3):395. doi:10.3390/medicina60030395
49. Ikonomidis I, Pavlidis G, Thymis J, et al. Effects of Glucagon‐Like Peptide‐1 Receptor Agonists, Sodium‐Glucose Cotransporter‐2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients With Type 2 Diabetes Mellitus After 12‐Month Treatment. J Am Heart Assoc. 2020;9(9):e015716. doi:10.1161/JAHA.119.015716
50. Vernstrøm L, Gullaksen S, Sørensen SS, Funck KL, Laugesen E, Poulsen PL. Separate and combined effects of empagliflozin and semaglutide on vascular function: A 32-week randomized trial. Diabetes Obes Metab. 2024;26(5):1624-1635. doi:10.1111/dom.15464
51. van Ruiten CC, van der Aart‐van der Beek AB, IJzerman RG, et al. Effect of exenatide twice daily and dapagliflozin, alone and in combination, on markers of kidney function in obese patients with type 2 diabetes: A prespecified secondary analysis of a randomized controlled clinical trial. Diabetes Obes Metab. 2021;23(8):1851-1858. doi:10.1111/dom.14410
52. American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care. 2024;48(Supplement_1):S207-S238. doi:10.2337/dc25-S010
53. Simms-Williams N, Treves N, Yin H, et al. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: population based cohort study. The BMJ. 2024;385:e078242. doi:10.1136/bmj-2023-078242
54. Marfella R, Prattichizzo F, Sardu C, et al. GLP-1 receptor agonists-SGLT-2 inhibitors combination therapy and cardiovascular events after acute myocardial infarction: an observational study in patients with type 2 diabetes. Cardiovasc Diabetol. 2024;23:10. doi:10.1186/s12933-023-02118-6
55. van Ruiten CC, Smits MM, Kok MD, et al. Mechanisms underlying the blood pressure lowering effects of dapagliflozin, exenatide, and their combination in people with type 2 diabetes: a secondary analysis of a randomized trial. Cardiovasc Diabetol. 2022;21:63. doi:10.1186/s12933-022-01492-x
56. Natesan V, Kim SJ. Diabetic Nephropathy – a Review of Risk Factors, Progression, Mechanism, and Dietary Management. Biomol Ther. 2021;29(4):365-372. doi:10.4062/biomolther.2020.204
57. Vernstrøm L, Gullaksen S, Sørensen SS, et al. Effects of semaglutide, empagliflozin and their combination on renal diffusion-weighted MRI and total kidney volume in patients with type 2 diabetes: a post hoc analysis from a 32 week randomised trial. Diabetologia. 2024;67(10):2175-2187. doi:10.1007/s00125-024-06228-y
58. Gullaksen S, Vernstrøm L, Sørensen SS, et al. Separate and combined effects of semaglutide and empagliflozin on kidney oxygenation and perfusion in people with type 2 diabetes: a randomised trial. Diabetologia. 2023;66(5):813-825. doi:10.1007/s00125-023-05876-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hanna Sitarek, Adrianna Tabeau, Joanna Prus, Justyna Pięta, Agnieszka Pawlik, Patryk Dudek, Klaudia Łuczak, Wiktoria Ulicka, Marcel Chudzikowski, Agata Prokopiuk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 53
Number of citations: 0