The Hypoxia Training as a New Therapeutic Modality in the Treatment of Neurological Disorders - A Literature Review
DOI:
https://doi.org/10.12775/JEHS.2025.79.59217Keywords
Hypoxia, hypoxia training, neuroprotection, neurological disorders, physical activityAbstract
Introduction: Hypoxia training has emerged as a promising therapeutic approach for various neurological disorders. This systematic review examines the neuroprotective mechanisms and potential clinical applications of hypoxic training in neurology.
Materials and Methods: Literature review was conducted using databases such as PubMed, NCBI, and Google Scholar, with search terms including "hypoxia", "hypoxia training", "neuroprotection", "neurological disorders" and "physical activity".
State of knowledge: Controlled exposure to moderate hypoxia induces beneficial cellular and molecular adaptations in the nervous system. Key mechanisms include HIF-1 pathway activation, enhanced antioxidant responses, increased neuroplasticity, and serotonergic system modulation. These adaptations protect neurons against oxidative stress, excitotoxicity, and mitochondrial damage. Hypoxia training shows promise in treating neurodegenerative diseases, stroke, and spinal cord injury, improving cognitive, motor, and respiratory functions. Optimal protocols involve 10-16% oxygen exposure for 30-240 minutes, 3-7 times weekly for 2-6 weeks.
Conclusions: Hypoxia training offers a potential non-pharmacological approach to treating neurological disorders with minimal side effects when properly administered. Further research is needed to establish optimal protocols, identify novel biomarkers, and conduct larger clinical trials to fully understand its therapeutic potential in neurology.
References
1. Sinex JA, Chapman RF. Hypoxic training methods for improving endurance exercise performance. J Sport Health Sci. 2015 Dec;4(4):325-32.
2. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013 Dec;47 Suppl 1:i45-50.
3. Wang H, Shi X, Schenck H, Hall JR, Ross SE, Kline GP, et al. Intermittent Hypoxia Training for Treating Mild Cognitive Impairment: A Pilot Study. Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317519896725.
4. Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease. Exp Biol Med (Maywood). 2016 Jun;241(12):1351-63.
5. Burtscher J, Syed MMK, Lashuel HA, Millet GP. Hypoxia Conditioning as a Promising Therapeutic Target in Parkinson's Disease? Mov Disord. 2021 Feb;36(2):340-51.
6. Baillieul S, Chacaroun S, Doutreleau S, Detante O, Pépin J, Verges S. Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries? Exp Neurol. 2017 Jun;292:123-35.
7. Jacono FJ, Peng YJ, Kumar GK, Prabhakar NR. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respir Physiol Neurobiol. 2005 Feb 15;145(2-3):135-42.
8. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012 Feb 3;148(3):399-408.
9. Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci. 2022 Jun 21;16:922915.
10. Yuan M, Feng Y, Zhao M, Xu J, Yin X, Jiang Y, et al. Identification and verification of genes associated with hypoxia microenvironment in Alzheimer's disease. Sci Rep. 2023 Sep 27;13(1):16168.
11. Ryou MG, Chen X, Cai M, Wang H, Jung ME, Metzger DB, Mallet RT, Shi X. Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study. Front Aging Neurosci. 2021 Jul 1;13:674688.
12. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci.
2015 Dec 10;11(6):1164-78.
13. Walz C, Jüngling K, Lessmann V, Gottmann K. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol. 2006 Dec;96(6):3512-6.
14. Li J, Wang Y. Effect of different methods of hypoxic exercise training on free radical oxidation and antioxidant enzyme activity in the rat brain. Biomed Rep. 2013 Nov;1(6):925-929.
15. Lavier J, Beaumann M, Menétrey S, Bouzourène K, Rosenblatt-Velin N, Pialoux V, Mazzolai L, Peyter AC, Pellegrin M, Millet GP. High-intensity exercise in hypoxia improves. endothelial function via increased nitric oxide bioavailability in C57BL/6 mice. Acta Physiol (Oxf). 2021 Jun;232(2):e13640.
16. Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in
cultured cells and tissue. Nat Protoc. 2010 Jan;5(1):51-66.
17. Serebrovska ZO, Serebrovska TV, Kholin VA, Tumanovska LV, Shysh AM, Pashevin DA, et al. Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study. Int J Mol Sci. 2019 Oct 30;20(21):5405.
18. González-Candia A, Candia AA, Paz A, Figueroa EG, Feliú F, Herrera EA, et al. Cardioprotective Antioxidant and Anti-Inflammatory Mechanisms Induced by Intermittent Hypobaric Hypoxia. Antioxidants (Basel). 2022 May 25;11(6):1053.
19. Gangwar A, Pooja, Sharma M, Singh K, Patyal A, Bhaumik G, Bhargava K, Sethy NK. Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced inflammation and dyslipidemia. Pflugers Arch. 2019 Jun;471(6):949-59.
20. Boyd CS, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol Chem. 2002 Mar-Apr;383(3-4):411-23.
21. Meares GP, Hughes KJ, Jaimes KF, Salvatori AS, Rhodes CJ, Corbett JA. AMP-activated protein kinase attenuates nitric oxide-induced beta-cell death. J Biol Chem. 2010 Jan 29;285(5):3191-200.
22. Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease?. Mov Disord. 2024;39(2):273-293.
23. Cheung EC, Escobar JB, Schunke KJ, Kay M, Mendelowitz D. Effects of Chronic Intermittent Hypoxia on Cognitive Function in Rats. Physiology. 2023 May 1.
24. Damgaard V, Mariegaard J, Lindhardsen JM, Ehrenreich H, Miskowiak KW. Neuroprotective Effects of Moderate Hypoxia: A Systematic Review. Brain Sci. 2023 Jul 31;13(8):1170.
25. Saha D, Dhyani V, Giri L. In vitro laser scanning confocal microscopy and unsupervised segmentation: Quantification of cytosolic calcium and RNA distribution in hypoxic neurons. J Neurosci Methods. 2023 Feb 1;384:109751.
26. Piao L, Fang Y, Wu R, Hamanaka RB, Mutlu GM, Archer SL, Garcia A, Sharp WW. Mild hypoxia as therapy for post-ischemic mitochondrial injury. Circulation. 2023 May 1.
27. Noviandy TR, Maulana A, Idroes GM, Maulydia NB, Patwekar M, Suhendra R, Idroes R. Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer's Disease Drug Discovery. Malacca J Pharm Res. 2023 Jul 20;6(1):1-12.
28. Yang Y, Li M, Leng B, Zhang X, Bian Y, Zhu J, et al. Alzheimer's Disease Biomarkers and Complement Proteins Mediate the Impact of Sleep Fragmentation on Cognitive Impairment in Obstructive Sleep Apnea Patients Without Dementia. J Alzheimers Dis. 2023;95(4):1685-1696.
29. Jeon SH, Hwang YS, Oh SY, Kim YE, Lee JY, Jeon B, et al. Bidirectional association between Parkinson's disease and obstructive sleep apnea: a cohort study. J Clin Sleep Med. 2023;19(9):1615-1623.
30. Tantingco G, Ryou MG. Normobaric intermittent hypoxic training regulates microglia phenotype and enhances phagocytic activity. Exp Biol Med (Maywood). 2020 Dec;245(18):1637-1646.
31. Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016 May 3;7:11499.
32. Zhang Q, Wang Q, Jin F, Huang D, Ji X, Wang Y. Intermittent hypoxia training improves cerebral blood flow without cognitive impairment. Ann Clin Transl Neurol. 2023 Dec 12;10(12):1783-1793.
33. Pearcey GE, Barry AJ, Sandhu MS, Carroll T, Roth EJ, Rymer WZ. Acute intermittent hypoxia in people living with chronic stroke – a preliminary study to examine safety and efficacy as a rehabilitation intervention. Exp Brain Res. 2023 Dec;241(12):3607-3619.
34. Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for Alzheimer's disease. Front Aging Neurosci. 2023 May 8;15:1157732.
35. Dołęga J, Papież Łukasz S, Mól P, Maciejczyk T, Sieńko A, Łabuś M, et al. Neuroplasticity. How regular physical activity influences the brain's structure and function. Qual Sport. 2024 Nov 27;34:56026.
36. Kerr J, Marshall SJ, Patterson RE, Marinac CR, Natarajan L, Rosenberg D, et al. Objectively Measured Physical Activity Is Related to Cognitive Function in Older Adults. J Am Geriatr Soc. 2013 Nov;61(11):1927-31.
37. Erickson KI. Therapeutic Effects of Exercise on Cognitive Function. J Am Geriatr Soc. 2013 Nov;61(11):2038-2039.
38. Wang H, Shi X, Schenck H, Hall JR, Ross SE, Kline GP, et al. Intermittent Hypoxia Training for Treating Mild Cognitive Impairment: A Pilot Study. Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317519896725.
39. Jung M, Zou L, Yu JJ, Ryu S, Kong Z, Yang L, et al. Does exercise have a protective effect on cognitive function under hypoxia? A systematic review with meta-analysis. J Sport Health Sci. 2020 Nov;9(6):562-577.
40. Miskowiak KW, Damgaard V, Schandorff JM, Mariegaard J, Lindhardsen JM, Ehrenreich H, et al. Effects of cognitive training under hypoxia on cognitive proficiency and neuroplasticity in remitted patients with mood disorders and healthy individuals: ALTIBRAIN randomized controlled trial. J Affect Disord. 2023 Sep 1;335:1-12.
41. Sutor T, Cavka K, Vose AK, Harkema SJ, Zholudeva LV, Hormigo KM, et al. Single-session effects of acute intermittent hypoxia on breathing function after human spinal cord injury. Exp Neurol. 2022 Dec;358:114219.
42. Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair. 2012 Feb;26(2):163-172.
43. Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C. Repetitive Intermittent Hypoxia and Locomotor Training Enhances Walking Function in Incomplete Spinal Cord Injury Subjects: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. J Neurotrauma. 2017 May 1;34(9):1803-1812.
44. Sandhu MS, Perez MA, Oudega M, Mitchell GS, Rymer WZ. Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury. Exp Neurol. 2021 Aug;342:113722.
45. Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014 Jan 14;82(2):104
46. Schneider SR, Lichtblau M, Furian M, Mayer LC, Berlier C, Müller J, et al. Cardiorespiratory Adaptation to Short-Term Exposure to Altitude vs. Normobaric Hypoxia in Patients with Pulmonary Hypertension. Front Med (Lausanne). 2021 Apr 15;8:657989.
47. Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol. 2021 Jul;341:113709.
48. Nagel MJ, Jarrard CP, Lalande S. Effect of a Single Session of Intermittent Hypoxia on Erythropoietin and Oxygen-Carrying Capacity. Int J Environ Res Public Health. 2020 Oct 4;17(19):7257.
49. Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Daily Exposure to Mild Intermittent Hypoxia Reduces Blood Pressure in Male Patients with Obstructive Sleep Apnea and Hypertension. Am J Respir Crit Care Med. 2022 Apr 15;205(8):949-958.
50. Uzun AB, Iliescu MG, Stanciu LE, Ionescu EV, Ungur RA, Ciortea VM, et al. Effectiveness of Intermittent Hypoxia-Hyperoxia Therapy in Different Pathologies with Possible Metabolic Implications. Metabolites. 2023 Jan 11;13(1):133.
51. Afina AB, Oleg SG, Alexander AB, Ines D, Alexander Yu S, Nikita VV, et al. The Effects of Intermittent Hypoxic-Hyperoxic Exposures on Lipid Profile and Inflammation in Patients With Metabolic Syndrome. Front Cardiovasc Med. 2021 Aug 6;8:716416
52. Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1181-97.
53. Serebrovs'ka TV, Kolesnikova IeE, Karaban' IM. [Respiratory regulation during adaptation to intermittent hypoxia in patients with Parkinson disease]. Fiziol Zh. 2012;58(6):71-9. Ukrainian.
54. Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, Renshaw PF. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses. 2021 Jan;146:110437.
55. Becke A, Müller K, Vock C, Stadler AM, Schiml M, Wallisch M, et al. Daily Intermittent Normobaric Hypoxia over 2 weeks reduces BDNF plasma levels in young adults - a Randomized Controlled Feasibility Study. Front Physiol. 2018 Sep 25;9:1337.
56. Satriotomo I, Dale EA, Dahlberg JM, Mitchell GS. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons. Neuroscience. 2016 May 3;322:479-88.
57. Zhang F, Niu L, Li S, Le W. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease. ACS Chem Neurosci. 2019 Feb 20;10(2):902-909.
58. Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol. 2023 Dec;68:102955.
59. Yang C, Yang Q, Xiang Y, Zeng XR, Xiao J, Le WD. The neuroprotective effects of oxygen therapy in Alzheimer's disease: a narrative review. Neural Regen Res. 2023 Jan;18(1):57-63.
60. Nalivaeva NN, Rybnikova EA. Editorial: Brain hypoxia and ischemia: New insights into neurodegeneration and neuroprotection, volume II. Front Neurosci. 2023 Jan 9;16:1125883.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Patrycja Hudzińska, Małgorzata Łabuś, Antoni Sieńko, Jakub Sadowski, Łukasz Stanisław Papież, Karol Krzykawski, Julia Dołęga, Bartłomiej Zabawa, Piotr Mól, Tomasz Maciejczyk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 282
Number of citations: 0