Efficacy and prognosis of selected therapies for cancers of the central nervous system – meningiomas, astrocytomas and ependymomas
DOI:
https://doi.org/10.12775/JEHS.2025.80.59075Keywords
meningiomas, astrocytomas, IDH-wild-type tumors, ependymomas, oncological treatmentAbstract
Introduction and purpose: There has been a global increase in the prevalence of adults diagnosed with primary brain tumors. Meningiomas are the most common primary brain tumors, the majority are benign. For asymptomatic, slow-growing tumors, observation with imaging studies may be considered. Surgical resection is the main form of treatment. Other options are radiotherapy and chemotherapy. Astrocytomas are biologically and morphologically diverse group of brain tumors divided into two classes. IDH-wild-type tumors are classified as grade IV astrocytomas. They are widespread malignant brain tumors in adults. Despite aggressive therapy consisting of surgical resection, radiotherapy and temozolomide as many as 90% of grade IV gliomas will have a local recurrence. Ependymoma is a primary tumor. The most proper method of treatment is GTR, in addition radiotherapy is considered helpful. Material and Methods: Bibliographic research was limited to papers published between 2014 and 2024. We have analyzed articles with free and paid access. The articles were identified using the PubMed and Google Scholar search, using key terms. Results: The paper focuses on efficacy and prognosis of selected therapies for cancers of the central nervous system with varying degrees of malignancy. This study reviews the prevalence, current diagnostic tools and evidence-based methods. Conclusions: Brain tumor treatment depends on the type of tumor and the patient's condition. Meningiomas can be treated from observation to surgical removal, and if the tumor cannot be completely removed, radiotherapy is used. Low-grade gliomas are treated surgically, while high-grade gliomas require additional chemotherapy and radiotherapy. Modern surgical techniques and stereotactic radiosurgery (SRS) improve treatment results. Ependymoma, a rare CNS tumor, requires complete removal in the case of benign changes, and radiotherapy in the case of higher-grade tumors.
References
[1] Shah V, Kochar P. Brain Cancer: Implication to Disease, Therapeutic Strategies and Tumor Targeted Drug Delivery Approaches. Recent Pat Anticancer Drug Discov 2018;13. https://doi.org/10.2174/1574892812666171129142023.
[2] PERKINS A, LIU G. Primary Brain Tumors in Adults: Diagnosis and Treatment. Am Fam Physician 2016;93:211-217B.
[3] Tran S, Bielle F. WHO 2021 and beyond: new types, molecular markers and tools for brain tumor classification. Curr Opin Oncol 2022;34:670–5. https://doi.org/10.1097/CCO.0000000000000903.
[4] van den Bent MJ, Geurts M, French PJ, Smits M, Capper D, Bromberg JEC, et al. Primary brain tumours in adults. Lancet 2023;402:1564–79. https://doi.org/10.1016/S0140-6736(23)01054-1.
[5] Jordan JT, Plotkin SR. Benign Intracranial Tumors. Neurol Clin 2018;36:501–16. https://doi.org/10.1016/J.NCL.2018.04.007.
[6] Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. Expert Rev Neurother 2018;18:241–9. https://doi.org/10.1080/14737175.2018.1429920.
[7] Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022;128:47–58. https://doi.org/10.1002/CNCR.33918.
[8] Fountain DM, Young AMH, Santarius T. Malignant meningiomas. Handb Clin Neurol 2020;170:245–50. https://doi.org/10.1016/B978-0-12-822198-3.00044-6.
[9] Alruwaili AA, Jesus O De. Meningioma. Evidence Based Practice in Neuro-Oncology 2023:321–9. https://doi.org/10.1007/978-981-16-2659-3_30.
[10] Buerki RA, Horbinski CM, Kruser T, Horowitz PM, James CD, Lukas R V. An overview of meningiomas. Future Oncol 2018;14:2161–77. https://doi.org/10.2217/FON-2018-0006.
[11] Rombi B, Ruggi A, Sardi I, Zucchelli M, Scagnet M, Toni F, et al. Proton therapy: A therapeutic opportunity for aggressive pediatric meningioma. Pediatr Blood Cancer 2021;68. https://doi.org/10.1002/PBC.28919.
[12] Nassiri F, Liu J, Patil V, Mamatjan Y, Wang JZ, Hugh-White R, et al. A clinically applicable integrative molecular classification of meningiomas. Nature 2021;597:119–25. https://doi.org/10.1038/S41586-021-03850-3.
[13] Maggio I, Franceschi E, Tosoni A, Nunno V Di, Gatto L, Lodi R, et al. Meningioma: not always a benign tumor. A review of advances in the treatment of meningiomas. CNS Oncol 2021;10. https://doi.org/10.2217/CNS-2021-0003.
[14] Susko MS, Raleigh DR. Radiotherapy for Meningioma. Adv Exp Med Biol 2023;1416:95–106. https://doi.org/10.1007/978-3-031-29750-2_8.
[15] Day SE, Halasz LM. Radiation therapy for WHO grade I meningioma. Chin Clin Oncol 2017;6. https://doi.org/10.21037/CCO.2017.06.01.
[16] Chen WC, Braunstein SE. Radiation therapy of meningioma. Handb Clin Neurol 2020;170:279–89. https://doi.org/10.1016/B978-0-12-822198-3.00047-1.
[17] Chao S, Rogers L. External beam radiation therapy for meningioma. Handb Clin Neurol 2020;170:259–78. https://doi.org/10.1016/B978-0-12-822198-3.00046-X.
[18] Magill ST, Schwartz TH, Theodosopoulos P V., McDermott MW. Brachytherapy for meningiomas. Handb Clin Neurol 2020;170:303–7. https://doi.org/10.1016/B978-0-12-822198-3.00049-5.
[19] Yudkoff C, Mahtabfar A, Piper K, Judy K. Safety and efficacy of salvage therapy with laser interstitial thermal therapy for malignant meningioma refractory to cesium-131 brachytherapy: illustrative case. Journal of Neurosurgery Case Lessons 2022;4. https://doi.org/10.3171/CASE22379.
[20] Mair MJ, Berghoff AS, Brastianos PK, Preusser M. Emerging systemic treatment options in meningioma. J Neurooncol 2023;161:245–58. https://doi.org/10.1007/S11060-022-04148-8.
[21] McFaline-Figueroa JR, Kaley TJ, Dunn IF, Bi WL. Biology and Treatment of Meningiomas: A Reappraisal. Hematol Oncol Clin North Am 2022;36:133–46. https://doi.org/10.1016/J.HOC.2021.09.003.
[22] Dasanu CA, Samara Y, Codreanu I, Limonadi FM, Hamid O, Alvarez-Argote J. Systemic therapy for relapsed/refractory meningioma: Is there potential for antiangiogenic agents? J Oncol Pharm Pract 2019;25:638–47. https://doi.org/10.1177/1078155218799850.
[23] Medici G, Freudenmann LK, Velz J, Wang SSY, Kapolou K, Paramasivam N, et al. A T-cell antigen atlas for meningioma: novel options for immunotherapy. Acta Neuropathol 2023;146:173–90. https://doi.org/10.1007/S00401-023-02605-W.
[24] Birzu C, Peyre M, Sahm F. Molecular alterations in meningioma: prognostic and therapeutic perspectives. Curr Opin Oncol 2020;32:613–22. https://doi.org/10.1097/CCO.0000000000000687.
[25] Rončević A, Koruga N, Soldo Koruga A, Rončević R, Rotim T, Šimundić T, et al. Personalized Treatment of Glioblastoma: Current State and Future Perspective. Biomedicines 2023;11. https://doi.org/10.3390/BIOMEDICINES11061579.
[26] Johnson DR, Galanis E. Medical management of high-grade astrocytoma: current and emerging therapies. Semin Oncol 2014;41:511–22. https://doi.org/10.1053/J.SEMINONCOL.2014.06.010.
[27] De Leeuw BI, Van Baarsen KM, Snijders TJ, Robe PAJT. Interrelationships between molecular subtype, anatomical location, and extent of resection in diffuse glioma: a systematic review and meta-analysis. Neurooncol Adv 2019;1. https://doi.org/10.1093/NOAJNL/VDZ032.
[28] Bonfield CM, Steinbok P. Pediatric cerebellar astrocytoma: a review. Childs Nerv Syst 2015;31:1677–85. https://doi.org/10.1007/S00381-015-2719-1.
[29] Davis ME. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs 2016;20:1–8. https://doi.org/10.1188/16.CJON.S1.2-8.
[30] Dimou J, Beland B, Kelly J. Supramaximal resection: A systematic review of its safety, efficacy and feasibility in glioblastoma. J Clin Neurosci 2020;72:328–34. https://doi.org/10.1016/J.JOCN.2019.12.021.
[31] Brown TJ, Bota DA, Van Den Bent MJ, Brown PD, Maher E, Aregawi D, et al. Management of low-grade glioma: a systematic review and meta-analysis. Neurooncol Pract 2019;6:249–58. https://doi.org/10.1093/NOP/NPY034.
[32] Nagoshi N, Tsuji O, Suzuki S, Nori S, Yagi M, Okada E, et al. Clinical outcomes and a therapeutic indication of intramedullary spinal cord astrocytoma. Spinal Cord 2022;60:216–22. https://doi.org/10.1038/S41393-021-00676-8.
[33] Ogunlade J, Wiginton JG, Elia C, Odell T, Rao SC. Primary Spinal Astrocytomas: A Literature Review. Cureus 2019;11. https://doi.org/10.7759/CUREUS.5247.
[34] Khalafallah AM, Rakovec M, Bettegowda C, Jackson CM, Gallia GL, Weingart JD, et al. A Crowdsourced Consensus on Supratotal Resection Versus Gross Total Resection for Anatomically Distinct Primary Glioblastoma. Neurosurgery 2021;89:712–9. https://doi.org/10.1093/NEUROS/NYAB257.
[35] Jackson C, Choi J, Khalafallah AM, Price C, Bettegowda C, Lim M, et al. A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J Neurooncol 2020;148:419–31. https://doi.org/10.1007/S11060-020-03556-Y.
[36] Haddad AF, Young JS, Morshed RA, Berger MS. FLAIRectomy: Resecting beyond the Contrast Margin for Glioblastoma. Brain Sci 2022;12. https://doi.org/10.3390/BRAINSCI12050544.
[37] Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J Neurosurg 2016;124:977–88. https://doi.org/10.3171/2015.5.JNS142087.
[38] Vivas-Buitrago T, Domingo RA, Tripathi S, De Biase G, Brown D, Akinduro OO, et al. Influence of supramarginal resection on survival outcomes after gross-total resection of IDH-wild-type glioblastoma. J Neurosurg 2021;136:1–8. https://doi.org/10.3171/2020.10.JNS203366.
[39] Pessina F, Navarria P, Cozzi L, Ascolese AM, Simonelli M, Santoro A, et al. Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J Neurooncol 2017;135:129–39. https://doi.org/10.1007/S11060-017-2559-9.
[40] Tripathi S, Vivas-Buitrago T, Domingo RA, De Biase G, Brown D, Akinduro OO, et al. IDH-wild-type glioblastoma cell density and infiltration distribution influence on supramarginal resection and its impact on overall survival: a mathematical model. J Neurosurg 2021;136:1567–75. https://doi.org/10.3171/2021.6.JNS21925.
[41] Glenn CA, Baker CM, Conner AK, Burks JD, Bonney PA, Briggs RG, et al. An Examination of the Role of Supramaximal Resection of Temporal Lobe Glioblastoma Multiforme. World Neurosurg 2018;114:e747–55. https://doi.org/10.1016/J.WNEU.2018.03.072.
[42] Lopez-Rivera V, Dono A, Lewis CT, Chandra A, Abdelkhaleq R, Sheth SA, et al. Extent of resection and survival outcomes of geriatric patients with glioblastoma: Is there benefit from aggressive surgery? Clin Neurol Neurosurg 2021;202. https://doi.org/10.1016/J.CLINEURO.2021.106474.
[43] Shah AH, Mahavadi A, Di L, Sanjurjo A, Eichberg DG, Borowy V, et al. Survival benefit of lobectomy for glioblastoma: moving towards radical supramaximal resection. J Neurooncol 2020;148:501–8. https://doi.org/10.1007/S11060-020-03541-5.
[44] Lukas R V, Professor A, Malnati J, Wainwright DA, Professor A, Ladomersky E, et al. Newly Diagnosed Glioblastoma: A Review on Clinical Management. Oncology (Williston Park) 2019;33:91. https://doi.org/10.1016/B978-0-323-99873-4.00026-8.
[45] Ma R, Taphoorn MJB, Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry 2021;92:1103–11. https://doi.org/10.1136/JNNP-2020-325334.
[46] Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022;21:148–67. https://doi.org/10.2463/MRMS.REV.2021-0116.
[47] Traylor JI, Pernik MN, Sternisha AC, McBrayer SK, Abdullah KG. Molecular and Metabolic Mechanisms Underlying Selective 5-Aminolevulinic Acid-Induced Fluorescence in Gliomas. Cancers (Basel) 2021;13:1–15. https://doi.org/10.3390/CANCERS13030580.
[48] Smith EJ, Gohil K, Thompson CM, Naik A, Hassaneen W. Fluorescein-Guided Resection of High Grade Gliomas: A Meta-Analysis. World Neurosurg 2021;155:181-188.e7. https://doi.org/10.1016/J.WNEU.2021.08.126.
[49] Gandhi S, Meybodi AT, Belykh E, Cavallo C, Zhao X, Pasha Syed M, et al. Survival Outcomes Among Patients With High-Grade Glioma Treated With 5-Aminolevulinic Acid-Guided Surgery: A Systematic Review and Meta-Analysis. Front Oncol 2019;9. https://doi.org/10.3389/FONC.2019.00620.
[50] Zhang N, Tian H, Huang D, Meng X, Guo W, Wang C, et al. Sodium Fluorescein-Guided Resection under the YELLOW 560 nm Surgical Microscope Filter in Malignant Gliomas: Our First 38 Cases Experience. Biomed Res Int 2017;2017. https://doi.org/10.1155/2017/7865747.
[51] Zeppa P, De Marco R, Monticelli M, Massara A, Bianconi A, Di Perna G, et al. Fluorescence-Guided Surgery in Glioblastoma: 5-ALA, SF or Both? Differences between Fluorescent Dyes in 99 Consecutive Cases. Brain Sci 2022;12. https://doi.org/10.3390/BRAINSCI12050555.
[52] Kim YZ, Kim C-Y, Lim DH. The Overview of Practical Guidelines for Gliomas by KSNO, NCCN, and EANO. Brain Tumor Res Treat 2022;10:83. https://doi.org/10.14791/BTRT.2022.0001.
[53] Yanagihara TK, Saadatmand HJ, Wang TJC. Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation. J Neurooncol 2016;130:397–411. https://doi.org/10.1007/S11060-016-2270-2.
[54] Minniti G, Scaringi C, Lanzetta G, Terrenato I, Esposito V, Arcella A, et al. Standard (60 Gy) or short-course (40 Gy) irradiation plus concomitant and adjuvant temozolomide for elderly patients with glioblastoma: a propensity-matched analysis. Int J Radiat Oncol Biol Phys 2015;91:109–15. https://doi.org/10.1016/J.IJROBP.2014.09.013.
[55] Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, et al. ESTRO-ACROP guideline “target delineation of glioblastomas.” Radiother Oncol 2016;118:35–42. https://doi.org/10.1016/J.RADONC.2015.12.003.
[56] Cabrera AR, Kirkpatrick JP, Fiveash JB, Shih HA, Koay EJ, Lutz S, et al. Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract Radiat Oncol 2016;6:217–25. https://doi.org/10.1016/J.PRRO.2016.03.007.
[57] Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 2017;18:e315–29. https://doi.org/10.1016/S1470-2045(17)30194-8.
[58] Sepúlveda-Sánchez JM, Muñoz Langa J, Arráez M, Fuster J, Hernández Laín A, Reynés G, et al. Correction to: SEOM clinical guideline of diagnosis and management of low-grade glioma (2017). Clin Transl Oncol 2018;20:108–9. https://doi.org/10.1007/S12094-017-1814-Z.
[59] Baumert BG, Hegi ME, van den Bent MJ, von Deimling A, Gorlia T, Hoang-Xuan K, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 2016;17:1521–32. https://doi.org/10.1016/S1470-2045(16)30313-8.
[60] Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 2019;393:678–88. https://doi.org/10.1016/S0140-6736(18)31791-4.
[61] Mohile NA, Messersmith H, Gatson NT, Hottinger AF, Lassman A, Morton J, et al. Therapy for Diffuse Astrocytic and Oligodendroglial Tumors in Adults: ASCO-SNO Guideline. J Clin Oncol 2022;40:403–26. https://doi.org/10.1200/JCO.21.02036.
[62] Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699–708. https://doi.org/10.1056/NEJMOA1308573.
[63] Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709–22. https://doi.org/10.1056/NEJMOA1308345.
[64] Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, et al. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018;19. https://doi.org/10.3390/IJMS19123773.
[65] Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021;16. https://doi.org/10.1186/S13014-021-01767-9.
[66] Pepper NB, Stummer W, Eich HT. The use of radiosensitizing agents in the therapy of glioblastoma multiforme-a comprehensive review. Strahlenther Onkol 2022;198:507–26. https://doi.org/10.1007/S00066-022-01942-1.
[67] Nehama D, Woodell AS, Maingi SM, Hingtgen SD, Dotti G. Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity. Neuro Oncol 2023;25:1551–62. https://doi.org/10.1093/NEUONC/NOAD092.
[68] Gessler DJ, Ferreira C, Dusenbery K, Chen CC. GammaTile®: Surgically targeted radiation therapy for glioblastomas. Future Oncol 2020;16:2445–55. https://doi.org/10.2217/FON-2020-0558.
[69] Kut C, Kleinberg L. Radiotherapy, lymphopenia and improving the outcome for glioblastoma: a narrative review. Chin Clin Oncol 2023;12. https://doi.org/10.21037/CCO-22-94.
[70] Zhang JF, Okai B, Iovoli A, Goulenko V, Attwood K, Lim J, et al. Bevacizumab and gamma knife radiosurgery for first-recurrence glioblastoma. J Neurooncol 2024;166:89–98. https://doi.org/10.1007/S11060-023-04524-Y.
[71] Glavatskyi OY, Zemskova O V., Khmelnytskyi H V., Kardash KA, Shuba IM, Stuley VA. Temozolomide in glioblastoma treatment: 15-year clinical experience and analysis of its efficacy. Exp Oncol 2020;42:148–56. https://doi.org/10.32471/EXP-ONCOLOGY.2312-8852.VOL-42-NO-2.14503.
[72] Reznik E, Smith AW, Taube S, Mann J, Yondorf MZ, Parashar B, et al. Radiation and Immunotherapy in High-grade Gliomas: Where Do We Stand? Am J Clin Oncol 2018;41:197–212. https://doi.org/10.1097/COC.0000000000000406.
[73] Liu Y, Strawderman MS, Warren KT, Richardson M, Serventi JN, Mohile NA, et al. Clinical Efficacy of Tumor Treating Fields for Newly Diagnosed Glioblastoma. Anticancer Res 2020;40:5801–6. https://doi.org/10.21873/ANTICANRES.14597.
[74] Yavuz BB, Kanyilmaz G, Aktan M. Factors affecting survival in glioblastoma patients below and above 65 years of age: A retrospective observational study. Indian J Cancer 2021;58:210–6. https://doi.org/10.4103/IJC.IJC_36_19.
[75] Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022;13. https://doi.org/10.3389/FIMMU.2022.939523.
[76] Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020;25. https://doi.org/10.3390/MOLECULES25204641.
[77] Abadi B, Ahmadi-Zeidabadi M, Dini L, Vergallo C. Stem cell-based therapy treating glioblastoma multiforme. Hematol Oncol Stem Cell Ther 2021;14:1–15. https://doi.org/10.1016/J.HEMONC.2020.08.001.
[78] Ishikawa E, Sugii N, Matsuda M, Kohzuki H, Tsurubuchi T, Akutsu H, et al. Maximum resection and immunotherapy improve glioblastoma patient survival: a retrospective single-institution prognostic analysis. BMC Neurol 2021;21. https://doi.org/10.1186/S12883-021-02318-1.
[79] Muir M, Patel R, Traylor JI, de Almeida Bastos DC, Kamiya C, Li J, et al. Laser interstitial thermal therapy for newly diagnosed glioblastoma. Lasers Med Sci 2022;37:1811–20. https://doi.org/10.1007/S10103-021-03435-6.
[80] Kamath AA, Friedman DD, Akbari SHA, Kim AH, Tao Y, Luo J, et al. Glioblastoma Treated With Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy: Safety, Efficacy, and Outcomes. Neurosurgery 2019;84:836–43. https://doi.org/10.1093/NEUROS/NYY375.
[81] Karachi A, Dastmalchi F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol 2018;20:1566–72. https://doi.org/10.1093/NEUONC/NOY072.
[82] Witthayanuwat S, Pesee M, Supaadirek C, Supakalin N, Thamronganantasakul K, Krusun S. Survival Analysis of Glioblastoma Multiforme. Asian Pac J Cancer Prev 2018;19:2613–7. https://doi.org/10.22034/APJCP.2018.19.9.2613.
[83] Stragliotto G, Pantalone MR, Rahbar A, Bartek J, Soderberg-Naucler C. Valganciclovir as Add-on to Standard Therapy in Glioblastoma Patients. Clin Cancer Res 2020;26:4031–9. https://doi.org/10.1158/1078-0432.CCR-20-0369.
[84] Wang Z, Wang Y, Yang T, Xing H, Wang Y, Gao L, et al. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients. Brief Bioinform 2021;22. https://doi.org/10.1093/BIB/BBAB032.
[85] Vázquez Cervantes GI, González Esquivel DF, Gómez-Manzo S, Pineda B, Pérez De La Cruz V. New Immunotherapeutic Approaches for Glioblastoma. J Immunol Res 2021;2021. https://doi.org/10.1155/2021/3412906.
[86] Wang WL, Aru N, Liu Z, Shen X, Ding YM, Wu SJ, et al. Prognosis of patients with newly diagnosed glioblastoma treated with molecularly targeted drugs combined with radiotherapy vs temozolomide monotherapy: A meta-analysis. Medicine 2019;98:e17759. https://doi.org/10.1097/MD.0000000000017759.
[87] Yamaguchi J, Ohka F, Motomura K, Saito R. Latest classification of ependymoma in the molecular era and advances in its treatment: a review. Jpn J Clin Oncol 2023;53:653–63. https://doi.org/10.1093/JJCO/HYAD056.
[88] Giridhar P, Nambirajan A, Benson R. Ependymoma. Evidence Based Practice in Neuro-Oncology 2023:283–6. https://doi.org/10.1007/978-981-16-2659-3_24.
[89] Delgado-López PD, Corrales-García EM, Alonso-García E, García-Leal R, González-Rodrigálvarez R, Araus-Galdós E, et al. Central nervous system ependymoma: clinical implications of the new molecular classification, treatment guidelines and controversial issues. Clinical and Translational Oncology 2019;21:1450–63. https://doi.org/10.1007/S12094-019-02082-2/METRICS.
[90] De Jesus O. Giant intradural myxopapillary ependymoma: review of literature. BMJ Case Rep 2021;14:239453. https://doi.org/10.1136/BCR-2020-239453.
[91] Wostrack M, Ringel F, Eicker SO, Jägersberg M, Schaller K, Kerschbaumer J, et al. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine 2018;28:654–62. https://doi.org/10.3171/2017.9.SPINE17494.
[92] Fan FF, Zhou J, Zheng YF, Liu SW, Tang ZJ, Wang Y. Clinical Features, Treatments, and Prognostic Factors of Spinal Myxopapillary Ependymoma. World Neurosurg 2021;149:e1105–11. https://doi.org/10.1016/J.WNEU.2020.12.147.
[93] Wang M, Zhang R, Liu X, Li D, Zhao P, Zuo Y, et al. Supratentorial Cortical Ependymomas: A Retrospective Series of 13 Cases at a Single Center. World Neurosurg 2018;112:e772–7. https://doi.org/10.1016/J.WNEU.2018.01.153.
[94] Wang Q, Cheng J, Li J, Zhang S, Liu W, Ju Y, et al. The Survival and Prognostic Factors of Supratentorial Cortical Ependymomas: A Retrospective Cohort Study and Literature-Based Analysis. Front Oncol 2020;10. https://doi.org/10.3389/FONC.2020.01585.
[95] Aftahy AK, Barz M, Krauss P, Liesche F, Wiestler B, Combs SE, et al. Intraventricular neuroepithelial tumors: surgical outcome, technical considerations and review of literature. BMC Cancer 2020;20:1–14. https://doi.org/10.1186/S12885-020-07570-1/TABLES/6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Klaudia Drewko, Sylwia Kopeć, Mateusz Orłowski, Julia Kuźniar, Patrycja Kozubek

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 58
Number of citations: 0