The Role of Different Diets in Shaping the Gut Microbiome
DOI:
https://doi.org/10.12775/JEHS.2025.80.58383Keywords
diet, Gut microbiome, gut, microbiome, Mediterranean diet, high protein diet, low-FODMAP diet, gluten-free diet, ketogenic dietAbstract
Introduction and Objective
The gut microbiota plays a crucial role in metabolism, immunity, and digestion, with diet being a key factor shaping its composition. Disruptions in microbiota balance contribute to chronic diseases like obesity and insulin resistance. This study examines the impact of various dietary patterns—Mediterranean, ketogenic, high-protein, gluten-free, and low FODMAP diets—on gut microbiota, highlighting their mechanisms, benefits, and risks to metabolic health.
Review Methods
A literature review of peer-reviewed studies on diet-microbiota interactions was conducted, focusing on microbiota composition, function, and metabolic effects.
Abbreviated Description of the State of Knowledge
The Mediterranean diet enhances beneficial bacteria, increases short-chain fatty acid (SCFA) production, and reduces inflammation, improving gut barrier integrity. The ketogenic diet alters microbiota by decreasing carbohydrate-fermenting bacteria, with both positive and negative metabolic outcomes. The low FODMAP diet alleviates irritable bowel syndrome symptoms but may reduce beneficial bacteria like Bifidobacterium. A high-protein diet increases bacteria involved in amino acid metabolism, yielding mixed effects on metabolic health. The gluten-free diet, while essential for celiac patients, may reduce microbiota diversity and lead to nutrient deficiencies. Each diet uniquely influences gut microbiota, underscoring the need for tailored dietary strategies to support metabolic and overall health.
Summary
Diet significantly impacts gut microbiota composition and function, affecting metabolic and immune health. Maintaining microbiota balance is crucial for homeostasis, as dysbiosis can contribute to disease. Understanding diet-microbiome interactions is essential for developing evidence-based nutritional strategies to optimize health.
References
[1]Microbiota: Friends or Enemies? Genes (Basel). 2019 Jul 15;10(7):534. doi: 10.3390/genes10070534. PMID: 31311141; PMCID: PMC6678592
[2]Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy. EBioMedicine. 2019 Jun;44:741-746. doi: 10.1016/j.ebiom.2019.05.024. Epub 2019 May 31. PMID: 31160269; PMCID: PMC6604367.
[3]Allan NP, Yamamoto BY, Kunihiro BP, Nunokawa CKL, Rubas NC, Wells RK, Umeda L, Phankitnirundorn K, Torres A, Peres R, Takahashi E, Maunakea AK. Ketogenic Diet Induced Shifts in the Gut Microbiome Associate with Changes to Inflammatory Cytokines and Brain-Related miRNAs in Children with Autism Spectrum Disorder. Nutrients. 2024 May 7;16(10):1401. doi: 10.3390/nu16101401. PMID: 38794639; PMCID: PMC11124410.
[4]Williams RSB, Boison D, Masino SA, Rho JM. Mechanisms of Ketogenic Diet Action. In: Noebels JL, Avoli M, Rogawski MA, Vezzani A, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies. 5th ed. New York: Oxford University Press; 2024. Chapter 79. PMID: 39637124.
[5]Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, Zhong H, Vatanen T, Gevers D, Wijmenga C, Wang Y, Zhernakova A. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016 Apr 21;8(1):45. doi: 10.1186/s13073-016-0295-y. PMID: 27102333; PMCID: PMC4841035.
[6]Sanz Y. Microbiome and Gluten. Ann Nutr Metab. 2015;67 Suppl 2:28-41. doi: 10.1159/000440991. Epub 2015 Nov 26. PMID: 26605783.
[7]Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes. 2010 May-Jun;1(3):135-7. doi: 10.4161/gmic.1.3.11868. Epub 2010 Mar 16. PMID: 21327021; PMCID: PMC3023594.
[8]Caio G, Lungaro L, Segata N, Guarino M, Zoli G, Volta U, De Giorgio R. Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients. 2020 Jun 19;12(6):1832. doi: 10.3390/nu12061832. PMID: 32575561; PMCID: PMC7353361
[9]Merra G, Noce A, Marrone G, Cintoni M, Tarsitano MG, Capacci A, De Lorenzo A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients. 2020 Dec 22;13(1):7. doi: 10.3390/nu13010007. PMID: 33375042; PMCID: PMC7822000
[10]Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients. 2023 Apr 29;15(9):2150. doi: 10.3390/nu15092150. PMID: 37432307; PMCID: PMC10180651.
[11]Pérez-Cano FJ. Mediterranean Diet, Microbiota and Immunity. Nutrients. 2022 Jan 10;14(2):273. doi: 10.3390/nu14020273. PMID: 35057454; PMCID: PMC8778230.
[12]Bellini M, Tonarelli S, Nagy AG, Pancetti A, Costa F, Ricchiuti A, de Bortoli N, Mosca M, Marchi S, Rossi A. Low FODMAP Diet: Evidence, Doubts, and Hopes. Nutrients. 2020 Jan 4;12(1):148. doi: 10.3390/nu12010148. PMID: 31947991; PMCID: PMC7019579.
[13]Barrett JS. How to institute the low-FODMAP diet. J Gastroenterol Hepatol. 2017 Mar;32 Suppl 1:8-10. doi: 10.1111/jgh.13686. PMID: 28244669.
[14]Cox SR, Lindsay JO, Fromentin S, Stagg AJ, McCarthy NE, Galleron N, Ibraim SB, Roume H, Levenez F, Pons N, Maziers N, Lomer MC, Ehrlich SD, Irving PM, Whelan K. Effects of Low FODMAP Diet on Symptoms, Fecal Microbiome, and Markers of Inflammation in Patients With Quiescent Inflammatory Bowel Disease in a Randomized Trial. Gastroenterology. 2020 Jan;158(1):176-188.e7. doi: 10.1053/j.gastro.2019.09.024. Epub 2019 Oct 2. PMID: 31586453.
[15]Algera JP, Demir D, Törnblom H, Nybacka S, Simrén M, Störsrud S. Low FODMAP diet reduces gastrointestinal symptoms in irritable bowel syndrome and clinical response could be predicted by symptom severity: A randomized crossover trial. Clin Nutr. 2022 Dec;41(12):2792-2800. doi: 10.1016/j.clnu.2022.11.001. Epub 2022 Nov 4. PMID: 36384081.
[16]Zhao Y, Chen L, Chen L, Huang J, Chen S, Yu Z. Exploration of the Potential Relationship Between Gut Microbiota Remodeling Under the Influence of High-Protein Diet and Crohn's Disease. Front Microbiol. 2022 Mar 3;13:831176. doi: 10.3389/fmicb.2022.831176. PMID: 35308389; PMCID: PMC8927681.
[17]Dong TS, Luu K, Lagishetty V, Sedighian F, Woo SL, Dreskin BW, Katzka W, Chang C, Zhou Y, Arias-Jayo N, Yang J, Ahdoot A, Li Z, Pisegna JR, Jacobs JP. A High Protein Calorie Restriction Diet Alters the Gut Microbiome in Obesity. Nutrients. 2020 Oct 21;12(10):3221. doi: 10.3390/nu12103221. PMID: 33096810; PMCID: PMC7590138.
[18]Ma N, Tian Y, Wu Y, Ma X. Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health. Curr Protein Pept Sci. 2017;18(8):795-808. doi: 10.2174/1389203718666170216153505. PMID: 28215168.
[19]Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008 Jun;7(6):500-6. doi: 10.1016/S1474-4422(08)70092-9. Epub 2008 May 2. PMID: 18456557.
[20]Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macías-González M, Tinahones FJ. Keto microbiota: A powerful contributor to host disease recovery. Rev Endocr Metab Disord. 2019 Dec;20(4):415-425. doi: 10.1007/s11154-019-09518-8. PMID: 31720986; PMCID: PMC6938789.
[21]Manos J. The human microbiome in disease and pathology. APMIS. 2022 Dec;130(12):690-705. doi: 10.1111/apm.13225. Epub 2022 May 6. PMID: 35393656; PMCID: PMC9790345.
[22]Barko PC, McMichael MA, Swanson KS, Williams DA. The Gastrointestinal Microbiome: A Review. J Vet Intern Med. 2018 Jan;32(1):9-25. doi: 10.1111/jvim.14875. Epub 2017 Nov 24. PMID: 29171095; PMCID: PMC5787212.
[23]Belizário JE, Faintuch J. Microbiome and Gut Dysbiosis. Exp Suppl. 2018;109:459-476. doi: 10.1007/978-3-319-74932-7_13. PMID: 30535609.
[24]American College of Gastroenterology Task Force on Irritable Bowel Syndrome; Brandt LJ, Chey WD, Foxx-Orenstein AE, Schiller LR, Schoenfeld PS, Spiegel BM, Talley NJ, Quigley EM. An evidence-based position statement on the management of irritable bowel syndrome. Am J Gastroenterol. 2009 Jan;104 Suppl 1:S1-35. doi: 10.1038/ajg.2008.122. PMID: 19521341.
[25]Monsbakken KW, Vandvik PO, Farup PG. Perceived food intolerance in subjects with irritable bowel syndrome-- etiology, prevalence and consequences. Eur J Clin Nutr. 2006 May;60(5):667-72. doi: 10.1038/sj.ejcn.1602367. PMID: 16391571.
[26]Muir JG, Shepherd SJ, Rosella O, Rose R, Barrett JS, Gibson PR. Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem. 2007 Aug 8;55(16):6619-27. doi: 10.1021/jf070623x. Epub 2007 Jul 11. PMID: 17625872.
[27]Gibson PR. History of the low FODMAP diet. J Gastroenterol Hepatol. 2017 Mar;32 Suppl 1:5-7. doi: 10.1111/jgh.13685. PMID: 28244673.
[28]Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016 Aug;164:144-51. doi: 10.1016/j.pharmthera.2016.04.007. Epub 2016 Apr 23. PMID: 27113407; PMCID: PMC4942363.
[29]Hill P, Muir JG, Gibson PR. Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol Hepatol (N Y). 2017 Jan;13(1):36-45. PMID: 28420945; PMCID: PMC5390324.
[30]Marsh A, Eslick EM, Eslick GD. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr. 2016 Apr;55(3):897-906. doi: 10.1007/s00394-015-0922-1. Epub 2015 May 17. PMID: 25982757.
[31]Laatikainen R, Koskenpato J, Hongisto SM, Loponen J, Poussa T, Hillilä M, Korpela R. Randomised clinical trial: low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment Pharmacol Ther. 2016 Sep;44(5):460-70. doi: 10.1111/apt.13726. Epub 2016 Jul 15. PMID: 27417338; PMCID: PMC5113694.
[32]O'Keeffe M, Jansen C, Martin L, Williams M, Seamark L, Staudacher HM, Irving PM, Whelan K, Lomer MC. Long-term impact of the low-FODMAP diet on gastrointestinal symptoms, dietary intake, patient acceptability, and healthcare utilization in irritable bowel syndrome. Neurogastroenterol Motil. 2018 Jan;30(1). doi: 10.1111/nmo.13154. Epub 2017 Jul 14. PMID: 28707437.
[33]Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009 Sep 11;284(37):24673-7. doi: 10.1074/jbc.R109.022848. Epub 2009 Jun 24. PMID: 19553672; PMCID: PMC2757170.
[34]Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunol. 2009 Jan;2(1):8-23. doi: 10.1038/mi.2008.75. Epub 2008 Oct 29. PMID: 19079330.
[35]Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008 Dec 22;8:232. doi: 10.1186/1471-2180-8-232. PMID: 19102766; PMCID: PMC2635381.
[36]De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009 Oct;102(8):1154-60. doi: 10.1017/S0007114509371767. Epub 2009 May 18. PMID: 19445821.
[37]Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007 Feb;73(4):1073-8. doi: 10.1128/AEM.02340-06. Epub 2006 Dec 22. PMID: 17189447; PMCID: PMC1828662.
[38]de Graaf AA, Venema K. Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol. 2008;53:73-168. doi: 10.1016/S0065-2911(07)53002-X. PMID: 17707144.
[39]García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients. 2021 Feb 22;13(2):699. doi: 10.3390/nu13020699. PMID: 33671569; PMCID: PMC7927055.
[40]Martín MÁ, Ramos S. Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients. 2021 Mar 5;13(3):850. doi: 10.3390/nu13030850. PMID: 33807621; PMCID: PMC7998994.
[41]Pérez-Cano FJ, Massot-Cladera M, Rodríguez-Lagunas MJ, Castell M. Flavonoids Affect Host-Microbiota Crosstalk through TLR Modulation. Antioxidants (Basel). 2014 Oct 17;3(4):649-70. doi: 10.3390/antiox3040649. PMID: 26785232; PMCID: PMC4665504.
[42]Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, Ivey KL, Shai I, Willett WC, Hu FB, Rimm EB, Stampfer MJ, Chan AT, Huttenhower C. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med. 2021 Feb;27(2):333-343. doi: 10.1038/s41591-020-01223-3. Epub 2021 Feb 11. PMID: 33574608; PMCID: PMC8186452.
[43]de Graaf AA, Venema K. Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol. 2008;53:73-168. doi: 10.1016/S0065-2911(07)53002-X. PMID: 17707144.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Paulina Opoka, Gracja Bojarzyńska, Weronika Pawul, Weronika Woźnica, Zuzanna Ćwiek, Aleksandra Mińkowska, Łukasz Lucima, Michał Barański, Klaudia Wydra, Monika Kondracka

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 81
Number of citations: 0