Skin aging - the role of nutrition and sugar
DOI:
https://doi.org/10.12775/JEHS.2025.80.58368Keywords
skin aging, skin and sugar, skin and glycation, photoaging, advanced glycation end products (AGEs)Abstract
Introduction. The skin is the largest organ of the human body, covering almost the entire surface. It performs numerous functions essential for life and normal functioning. Skin aging is a complex process involving both intrinsic and extrinsic changes. It can be classified into intrinsic and extrinsic aging. Among these, sun exposure is undoubtedly the most significant and primary exogenous factor, with its effects depending on intensity and duration. The accumulation of advanced glycation end products (AGEs) significantly affects skin aging.
Aim of the study. This review aims to present and summarize the roles of key factors influencing skin aging, emphasizing the importance of healthy nutrition as a method to slow down the aging process.
Materials and Methods. A literature review was conducted using the PubMed database to identify relevant studies from the past twenty years. The most significant findings were compiled in this review. The literature was selected using keywords such as "skin aging," "skin and effects of sugar," and "skin and glycation."
Results. Among extrinsic factors, sun exposure is the most significant. Diets high in fats delay skin healing, promote oxidative stress, and induce inflammatory reactions in the skin. Excess dietary fats can also lead to morphological changes and impaired matrix remodeling in the skin. Among the mechanisms underpinning skin aging, glycation is one of the most extensively studied. Glycation is a non-enzymatic process where proteins, lipids, and nucleic acids covalently bind with sugar molecules, typically glucose or fructose.
Conclusion. Various exogenous factors influence the skin’s condition, accelerating aging, contributing to skin diseases, and increasing carcinogenesis risk. Evidence supports the effectiveness of sunscreen use and limiting sun exposure to prevent skin aging. Furthermore, a balanced diet rich in antioxidants, with reduced free sugars and carbohydrates, can lower AGE production in the skin.
References
1. Kovacs D, Cardinali G, Aspite N, et al. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br J Dermatol. 2010;163(5):1020-1027. doi:10.1111/j.1365-2133.2010.09946.x
https://doi.org/10.1111/j.1365-2133.2010.09946.x
2. Bernerd F, Asselineau D. An organotypic model of skin to study photodamage and photoprotection in vitro. J Am Acad Dermatol. 2008;58(5 Suppl 2):S155-S159. doi:10.1016/j.jaad.2007.08.050
https://www.jaad.org/article/S0190-9622(07)02414-0/abstract
3. Imokawa G, Ishida K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int J Mol Sci. 2015;16(4):7753-7775. Published 2015 Apr 8. doi:10.3390/ijms16047753
https://www.jaad.org/article/S0190-9622(07)02414-0/abstract
4. Tigges J, Krutmann J, Fritsche E, et al. The hallmarks of fibroblast ageing. Mech Ageing Dev. 2014;138:26-44. doi:10.1016/j.mad.2014.03.004
https://doi.org/10.1016/j.mad.2014.03.004
5. Bernerd F, Marionnet C, Duval C. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection. Indian J Dermatol Venereol Leprol. 2012;78 Suppl 1:S15-S23. doi:10.4103/0378-6323.97351
6. Fagot D, Asselineau D, Bernerd F. Matrix metalloproteinase-1 production observed after solar-simulated radiation exposure is assumed by dermal fibroblasts but involves a paracrine activation through epidermal keratinocytes. Photochem Photobiol. 2004;79(6):499-505. doi:10.1562/yg-03-11-r1.1
https://doi.org/10.1562/YG-03-11-R1.1
7. Khavkin J, Ellis DA. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am. 2011;19(2):229-234. doi:10.1016/j.fsc.2011.04.003
https://doi.org/10.1016/j.fsc.2011.04.003
8. Baumann L. Skin ageing and its treatment. J Pathol. 2007;211(2):241-251. doi:10.1002/path.2098
https://doi.org/10.1002/path.2098
9. Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M. Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol. 1987;117(4):419-428. doi:10.1111/j.1365-2133.1987.tb04921.x
https://doi.org/10.1111/j.1365-2133.1987.tb04921.x
10. Thiers BH, Maize JC, Spicer SS, Cantor AB. The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol. 1984;82(3):223-226. doi:10.1111/1523-1747.ep12260055
https://www.jidonline.org/article/S0022-202X(15)43327-5/pdf
11. Cao C, Xiao Z, Wu Y, Ge C. Diet and Skin Aging-From the Perspective of Food Nutrition. Nutrients. 2020;12(3):870. Published 2020 Mar 24. doi:10.3390/nu12030870
https://doi.org/10.3390/nu12030870
12. Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35(3):155-159. doi:10.1016/j.micron.2003.11.002
https://doi.org/10.1016/j.micron.2003.11.002
13. Gilchrest BA, Blog FB, Szabo G. Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol. 1979;73(2):141-143. doi:10.1111/1523-1747.ep12581580
https://www.jidonline.org/article/S0022-202X(15)45561-7/pdf
14. Farrar MD. Advanced glycation end products in skin ageing and photoageing: what are the implications for epidermal function?. Exp Dermatol. 2016;25(12):947-948. doi:10.1111/exd.13076
https://doi.org/10.1111/exd.13076
15. Radjei S, Gareil M, Moreau M, et al. The glyoxalase enzymes are differentially localized in epidermis and regulated during ageing and photoageing. Exp Dermatol. 2016;25(6):492-494. doi:10.1111/exd.12995
https://doi.org/10.1111/exd.12995
16. Handoko HY, Rodero MP, Boyle GM, et al. UVB-induced melanocyte proliferation in neonatal mice driven by CCR2-independent recruitment of Ly6c(low)MHCII(hi) macrophages. J Invest Dermatol. 2013;133(7):1803-1812. doi:10.1038/jid.2013.9
https://www.jidonline.org/article/S0022-202X(15)36341-7/fulltext
17. Zhuang Y, Lyga J. Inflammaging in skin and other tissues - the roles of complement system and macrophage. Inflamm Allergy Drug Targets. 2014;13(3):153-161. doi:10.2174/1871528113666140522112003
https://www.eurekaselect.com/article/60630
18. Popkin BM, D'Anci KE, Rosenberg IH. Water, hydration, and health. Nutr Rev. 2010;68(8):439-458. doi:10.1111/j.1753-4887.2010.00304.x
https://doi.org/10.1111/j.1753-4887.2010.00304.x
19. Jéquier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr. 2010;64(2):115-123. doi:10.1038/ejcn.2009.111
https://www.nature.com/articles/ejcn2009111
20. Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol. 2007;6(2):75-82. doi:10.1111/j.1473-2165.2007.00300.x
https://doi.org/10.1111/j.1473-2165.2007.00300.x
21. Bellizzi V, Calella P, Carrero JJ, Fouque D. Very low-protein diet to postpone renal failure: Pathophysiology and clinical applications in chronic kidney disease. Chronic Dis Transl Med. 2018;4(1):45-50. Published 2018 Mar 8. doi:10.1016/j.cdtm.2018.01.003
https://doi.org/10.1016/j.cdtm.2018.01.003
22. Strasser B, Volaklis K, Fuchs D, Burtscher M. Role of Dietary Protein and Muscular Fitness on Longevity and Aging. Aging Dis. 2018;9(1):119-132. Published 2018 Feb 1. doi:10.14336/AD.2017.0202
https://www.aginganddisease.org/EN/10.14336/AD.2017.0202
23. Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci. 2021;22(16):9097. Published 2021 Aug 23. doi:10.3390/ijms22169097
https://doi.org/10.3390/ijms22169097
24. Ellinger S, Stehle P. Efficacy of vitamin supplementation in situations with wound healing disorders: results from clinical intervention studies. Curr Opin Clin Nutr Metab Care. 2009;12(6):588-595. doi:10.1097/MCO.0b013e328331a5b5
25. Mehri A. Trace Elements in Human Nutrition (II) - An Update. Int J Prev Med. 2020;11:2. Published 2020 Jan 3. doi:10.4103/ijpvm.IJPVM_48_19
26. Chen W, Zhou X, Zhu W. Trace Elements Homeostatic Imbalance in Psoriasis: a Meta-Analysis. Biol Trace Elem Res. 2019;191(2):313-322. doi:10.1007/s12011-018-1626-1
https://link.springer.com/article/10.1007/s12011-018-1626-1
27. Borkow G. Using Copper to Improve the Well-Being of the Skin. Curr Chem Biol. 2014;8(2):89-102. doi:10.2174/2212796809666150227223857
https://www.eurekaselect.com/article/65514
28. Reelfs O, Eggleston IM, Pourzand C. Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs. Curr Drug Metab. 2010;11(3):242-249. doi:10.2174/138920010791196265
https://www.eurekaselect.com/article/15751
29. Pelle E, Jian J, Zhang Q, et al. Menopause increases the iron storage protein ferritin in skin. J Cosmet Sci. 2013;64(3):175-179.
https://pubmed.ncbi.nlm.nih.gov/23752032/
30. Zhu X, Jiang M, Song E, Jiang X, Song Y. Selenium deficiency sensitizes the skin for UVB-induced oxidative damage and inflammation which involved the activation of p38 MAPK signaling. Food Chem Toxicol. 2015;75:139-145. doi:10.1016/j.fct.2014.11.017
https://doi.org/10.1016/j.fct.2014.11.017
31. Sengupta A, Lichti UF, Carlson BA, et al. Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One. 2010;5(8):e12249. Published 2010 Aug 18. doi:10.1371/journal.pone.0012249
https://doi.org/10.1371/journal.pone.0012249
32. Rosa DF, Sarandy MM, Novaes RD, da Matta SLP, Gonçalves RV. Effect of a high-fat diet and alcohol on cutaneous repair: A systematic review of murine experimental models. PLoS One. 2017;12(5):e0176240. Published 2017 May 11. doi:10.1371/journal.pone.0176240
https://doi.org/10.1371/journal.pone.0176240
33. Nguyen HP, Katta R. Sugar Sag: Glycation and the Role of Diet in Aging Skin. Skin Therapy Lett. 2015;20(6):1-5.
https://pubmed.ncbi.nlm.nih.gov/27224842/
34. Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol. 2001;145(1):10-18. doi:10.1046/j.1365-2133.2001.04275.x
https://doi.org/10.1046/j.1365-2133.2001.04275.x
35. Van Puyvelde K, Mets T, Njemini R, Beyer I, Bautmans I. Effect of advanced glycation end product intake on inflammation and aging: a systematic review. Nutr Rev. 2014;72(10):638-650. doi:10.1111/nure.12141
https://doi.org/10.1111/nure.12141
36. Kawabata K, Yoshikawa H, Saruwatari K, et al. The presence of N(ε)-(Carboxymethyl) lysine in the human epidermis. Biochim Biophys Acta. 2011;1814(10):1246-1252. doi:10.1016/j.bbapap.2011.06.006
https://doi.org/10.1016/j.bbapap.2011.06.006
37. Dyer DG, Dunn JA, Thorpe SR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91(6):2463-2469. doi:10.1172/JCI116481
https://www.jci.org/articles/view/116481
38. Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging?. Dermatoendocrinol. 2012;4(3):259-270. doi:10.4161/derm.22028
https://doi.org/10.4161/derm.22028
39. Nowotny K, Grune T. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Arch Biochem Biophys. 2014;542:56-64. doi:10.1016/j.abb.2013.12.007
https://doi.org/10.1016/j.abb.2013.12.007
40. URBACH E, LENTZ JW. Carbohydrate metabolism and the skin. Arch Derm Syphilol. 1945;52:301-316. doi:10.1001/archderm.1945.01510290006001
https://jamanetwork.com/journals/jamadermatology/article-abstract/521127
41. Danby FW. Nutrition and aging skin: sugar and glycation. Clin Dermatol. 2010;28(4):409-411. doi:10.1016/j.clindermatol.2010.03.018
https://doi.org/10.1016/j.clindermatol.2010.03.018
42. O'Brien J, Morrissey PA. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr. 1989;28(3):211-248. doi:10.1080/10408398909527499
https://doi.org/10.1080/10408398909527499
43. Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9):526-539. Published 2011 May 24. doi:10.1038/nrendo.2011.74
https://www.nature.com/articles/nrendo.2011.74
44. Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11(2):275-281. doi:10.1089/jmf.2007.536
https://doi.org/10.1089/jmf.2007.536
45. Tarwadi KV, Agte VV. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol Trace Elem Res. 2011;143(2):717-725. doi:10.1007/s12011-010-8915-7
https://link.springer.com/article/10.1007/s12011-010-8915-7
(50)46. Fukami K, Yamagishi S, Sakai K, et al. Potential inhibitory effects of L-carnitine supplementation on tissue advanced glycation end products in patients with hemodialysis. Rejuvenation Res. 2013;16(6):460-466. doi:10.1089/rej.2013.1459
https://doi.org/10.1089/rej.2013.1459
47. Peppa M, Brem H, Ehrlich P, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes. 2003;52(11):2805-2813. doi:10.2337/diabetes.52.11.2805
https://doi.org/10.2337/diabetes.52.11.2805
(tabl 1) 48. https://sfderm.com/glogau-wrinkle-scale/
(tabl 2) 49. https://mibellebiochemistry.com/not-so-sweet-process-glycation
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Żanna Białoszycka, Monika Białoszycka , Alisa Pachevska , Valerij Istoshyn , Alina Biloshytska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 144
Number of citations: 0