Is There a Connection Between Intestinal Barrier Disruption, Dysbiosis, and the Development of Type 2 Diabetes Mellitus? - a literature review
DOI:
https://doi.org/10.12775/JEHS.2025.79.58355Keywords
intestinal barrier, gut microbiome, leaky gut syndrome, diabetes mellitus, hyperglycemiaAbstract
Introduction and purpose: The intestinal barrier and microbiota play an instrumental role in maintaining good health. Its proper function is ensured by many different mechanisms, especially intercellular tight junctions (TJ). Numerous factors such as poor eating habits may lead to dysbiosis, disruption of TJs and subsequently to the development of the leaky gut syndrome.
Objecton: To assess whether there is a connection between intestinal barrier disruption, dysbiosis and higher probability of the development of type 2 diabetes mellitus (T2DM).
Material and method: The review was conducted with the use of databases such as PubMed and Scopus. The used key words were as follows: intestinal barrier, gut microbiome, leaky gut syndrome, diabetes mellitus and hyperglycemia. Only studies which contained relevant information about the influence of an increased intestinal permeability and dysbiosis on diabetes mellitus were enrolled in this research.
Results: DM may lead to increased intestinal permeability due to numerous mechanisms such as GLUT-2-dependent mechanisms, dysfunctions in tight junction, entrance of pathogenic bacteria into the circulation, which consequently may cause a low systemic inflammation and beta cell destruction. There is a distinct possibility that intestinal barrier may be restored with use of butyrate, prebiotics, antibiotics, GLP-2 agonists, probiotics, metformin, colostrum and kombucha. According to studies proper microflora may improve intestinal barrier’s function and also glucose management.
conclusion: Taking into consideration all facts mentioned above, the authors drew a conclusion that there is a strong connection between intestinal barrier disruption, state of a microbiome and the development of T2DM.
References
1. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014 Mar;14(3):141–53. http://dx.doi.org/ 10.1038/nri3608
2. CAMILLERI M, MADSEN K, SPILLER R, VAN MEERVELD BG, VERNE GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012 Jun;24(6):503–12. http://dx.doi.org/10.1111/j.1365-2982.2012.01921.x
3. Usuda H, Okamoto T, Wada K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci. 2021 Jul 16;22(14):7613. http://dx.doi.org/10.3390/ijms22147613
4. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J. 2020;91(1):e13357. http://dx.doi.org/10.1111/asj.13357
5. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019 Jul 16;11(7):1613. http://dx.doi.org/10.3390/nu11071613
6. Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability in Vitro and in Vivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14. Am J Pathol. 2013 Feb;182(2):375–87. http://dx.doi.org/10.1016/j.ajpath.2012.10.014
7. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019 Aug;68(8):1516–26. http://dx.doi.org/10.1136/gutjnl-2019-318427
8. Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol. 2020;11:1823. http://dx.doi.org/10.3389/fimmu.2020.01823
9. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011 May 12;473(7346):174–80. http://dx.doi.org/10.1038/nature09944
10. Schoultz I, Keita ÅV. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020 Aug 17;9(8):1909. http://dx.doi.org/ 10.3390/cells9081909
11. Banaszak M, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. Association between Gut Dysbiosis and the Occurrence of SIBO, LIBO, SIFO and IMO. Microorganisms. 2023 Feb 24;11(3):573. http://dx.doi.org/10.3390/microorganisms11030573
12. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2024 Mar;19(2):275–93. http://dx.doi.org/10.1007/s11739-023-03374-w
13. Diabetes [Internet]. [cited 2025 Jan 26]. Available from: https://www.who.int/health-topics/diabetes
14. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018 Feb;14(2):88–98. http://dx.doi.org/10.1038/nrendo.2017.151
15. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021 Jan;19(1):55–71. http://dx.doi.org/10.1038/s41579-020-0433-9
16. de Kort S, Keszthelyi D, Masclee A a. M. Leaky gut and diabetes mellitus: what is the link? Obes Rev. 2011 Jun;12(6):449–58. http://dx.doi.org/10.1111/j.1467-789X.2010.00845.x
17. Tomasics G, Schandl L, Polyák A, Winkler G. [Diabetes mellitus and the intestinal microbiome]. Orv Hetil. 2023 Jun 25;164(25):981–7. http://dx.doi.org/10.1556/650.2023.32788
18. Hawkesworth S, Moore SE, Fulford AJC, Barclay GR, Darboe AA, Mark H, et al. Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr Diabetes. 2013 Aug 26;3(8):e83. http://dx.doi.org/10.1038/nutd.2013.24
19. Wang YF, Liang FM, Liu M, Ding LC, Hui JJ, Xu HY, et al. Is compromised intestinal barrier integrity responsible for the poor prognosis in critically ill patients with pre-existing hyperglycemia? Diabetol Metab Syndr. 2022 Nov 17;14(1):172. http://dx.doi.org/10.1186/s13098-022-00943-5
20. Gueddouri D, Caüzac M, Fauveau V, Benhamed F, Charifi W, Beaudoin L, et al. Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Mol Metab. 2022 Mar;57:101438. http://dx.doi.org/10.1016/j.molmet.2022.101438
21. Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, et al. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep. 2018 Sep 13;18(10):98. http://dx.doi.org/10.1007/s11892-018-1057-6
22. Xu J, Liang R, Zhang W, Tian K, Li J, Chen X, et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes. 2020 Mar;12(3):224–36. http://dx.doi.org/10.1111/1753-0407.12986
23. Yamada T, Hino S, Iijima H, Genda T, Aoki R, Nagata R, et al. Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasis. EBioMedicine. 2019 Oct;48:513–25. http://dx.doi.org/10.1016/j.ebiom.2019.09.008
24. Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol. 2021 Apr 22;12:673708. http://dx.doi.org/10.3389/fimmu.2021.673708
25. Bona MD, Torres CH de M, Lima SCVC, Morais AH de A, Lima AÂM, Maciel BLL. Intestinal Barrier Permeability in Obese Individuals with or without Metabolic Syndrome: A Systematic Review. Nutrients. 2022 Sep 3;14(17):3649. http://dx.doi.org/10.3390/nu14173649
26. Ruuskanen MO, Erawijantari PP, Havulinna AS, Liu Y, Méric G, Tuomilehto J, et al. Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults. Diabetes Care. 2022 Apr 1;45(4):811–8. http://dx.doi.org/10.2337/dc21-2358
27. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013 Jun;13(3):435–44. http://dx.doi.org/10.1007/s11892-013-0375-y
28. Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, et al. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells. 2021 Nov 14;10(11):3164. http://dx.doi.org/10.3390/cells10113164
29. Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol. 2024 Apr 28;34(4):747–56. http://dx.doi.org/10.4014/jmb.2312.12031
30. Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. Int J Vitam Nutr Res. 2024 Jun;94(5–6):405–21. http://dx.doi.org/10.1024/0300-9831/a000801
31. Arnone D, Chabot C, Heba AC, Kökten T, Caron B, Hansmannel F, et al. Sugars and Gastrointestinal Health. Clin Gastroenterol Hepatol. 2022 Sep;20(9):1912-1924.e7. http://dx.doi.org/10.1016/j.cgh.2021.12.011
32. Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose Promotes Leaky Gut, Endotoxemia, and Liver Fibrosis Through Ethanol-Inducible Cytochrome P450-2E1-Mediated Oxidative and Nitrative Stress. Hepatology. 2021 Jun;73(6):2180–95. http://dx.doi.org/10.1002/hep.30652
33. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. http://dx.doi.org/10.1007/s00125-017-4342-z
34. Sadagopan A, Mahmoud A, Begg M, Tarhuni M, Fotso M, Gonzalez NA, et al. Understanding the Role of the Gut Microbiome in Diabetes and Therapeutics Targeting Leaky Gut: A Systematic Review. Cureus. 2023 Jul;15(7):e41559. http://dx.doi.org/10.7759/cureus.41559
35. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017 Jul;23(7):850–8. http://dx.doi.org/10.1038/nm.4345
36. Snelson M, de Pasquale C, Ekinci EI, Coughlan MT. Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Pract Res Clin Endocrinol Metab. 2021 May;35(3):101507. http://dx.doi.org/10.1016/j.beem.2021.101507
37. Zare Javid A, Aminzadeh M, Haghighi-zadeh MH, Jamalvandi M. The Effects of Synbiotic Supplementation on Glycemic Status, Lipid Profile, and Biomarkers of Oxidative Stress in Type 1 Diabetic Patients. A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Diabetes Metab Syndr Obes. 2020 Mar 2;13:607–17. http://dx.doi.org/10.2147/DMSO.S238867
38. Wang Y, Dilidaxi D, Wu Y, Sailike J, Sun X, Nabi XH. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother. 2020 May;125:109914. http://dx.doi.org/10.1016/j.biopha.2020.109914
39. Xi Y, Xu PF. Diabetes and gut microbiota. World J Diabetes. 2021 Oct 15;12(10):1693–703. http://dx.doi.org/10.4239/wjd.v12.i10.1693
40. Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients. 2021 Jan 19;13(1):273. http://dx.doi.org/10.3390/nu13010273
41. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270–8. http://dx.doi.org/10.4161/oxim.2.5.9498
42. Del Bo’ C, Bernardi S, Cherubini A, Porrini M, Gargari G, Hidalgo-Liberona N, et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin Nutr. 2021 May;40(5):3006–18. http://dx.doi.org/10.1016/j.clnu.2020.12.014
43. Chen K, Zhao H, Shu L, Xing H, Wang C, Lu C, et al. Effect of resveratrol on intestinal tight junction proteins and the gut microbiome in high-fat diet-fed insulin resistant mice. Int J Food Sci Nutr. 2020 Dec;71(8):965–78. http://dx.doi.org/10.1080/09637486.2020.1754351
44. Xu S, Wang Y, Wang J, Geng W. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods. 2022 Mar 5;11(5):754. http://dx.doi.org/10.3390/foods11050754
45. Huang J, Guan B, Lin L, Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered. 2021 Dec;12(2):11947–58. http://dx.doi.org/10.1080/21655979.2021.2009322
46. Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk-Karolczuk J, Domagalska M, Cichoń J, et al. A Systematic Review of the Influence of Bovine Colostrum Supplementation on Leaky Gut Syndrome in Athletes: Diagnostic Biomarkers and Future Directions. Nutrients. 2022 Jun 17;14(12):2512. http://dx.doi.org/10.3390/nu14122512
47. Pasini E, Corsetti G, Assanelli D, Testa C, Romano C, Dioguardi FS, et al. Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes. Minerva Med. 2019 Feb;110(1):3–11. http://dx.doi.org/10.23736/S0026-4806.18.05589-1
48. Lau WL, Tran T, Rhee CM, Kalantar-Zadeh K, Vaziri ND. Diabetes and the Gut Microbiome. Semin Nephrol. 2021 Mar;41(2):104–13. http://dx.doi.org/10.1016/j.semnephrol.2021.03.005
49. Liang Y, Yin W, Luo C, Sun L, Feng T, Zhang Y, et al. Maternal intermittent fasting in mice disrupts the intestinal barrier leading to metabolic disorder in adult offspring. Commun Biol. 2023 Jan 12;6(1):30. http://dx.doi.org/10.1038/s42003-022-04380-y
50. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 2015;10(5):e0126931. http://dx.doi.org/10.1371/journal.pone.0126931
51. Abuqwider J, Corrado A, Scidà G, Lupoli R, Costabile G, Mauriello G, et al. Gut microbiome and blood glucose control in type 1 diabetes: a systematic review. Front Endocrinol (Lausanne). 2023 Nov 15;14:1265696. http://dx.doi.org/10.3389/fendo.2023.1265696
52. Riedel S, Pheiffer C, Johnson R, Louw J, Muller CJF. Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Front Endocrinol (Lausanne). 2021;12:833544. http://dx.doi.org/10.3389/fendo.2021.833544
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Wicha, Monika Brzozowska, Wiktoria Wardal, Natalia Furlepa, Robert Rzenno, Karolina Wojciechowska, Marcelina Matuszewska, Natalia Sidz, Magdalena Tomaszewska, Wiktoria Jedlikowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 22
Number of citations: 0