Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Artificial intelligence in type 1 diabetes mellitus
  • Home
  • /
  • Artificial intelligence in type 1 diabetes mellitus
  1. Home /
  2. Archives /
  3. Vol. 79 (2025) /
  4. Medical Sciences

Artificial intelligence in type 1 diabetes mellitus

Authors

  • Wiktoria Łoskot Uniwersytecki Szpital Kliniczny nr 2 Uniwersytetu Medycznego w Łodzi: Łódź, PL https://orcid.org/0009-0001-5392-4835
  • Jan Szwech Masovian Specialist Hospital, ul. Jana Aleksandrowicza 5, 26-617 Radom https://orcid.org/0009-0002-9312-8152
  • Mateusz Matczak https://orcid.org/0009-0000-9701-406X
  • Karol Jasiński Provincial Hospital of St. Luke in Tarnów, 33-100 Tarnów, ul. Lwowska 178a https://orcid.org/0009-0004-6845-5199
  • Aleksandra Broda Hospital of the Ministry of Interior and Administration in Lodz, ul. Północna 42, 91–425 Łódź https://orcid.org/0009-0004-5179-9411
  • Kacper Hoksa Hospital of the Ministry of Interior and Administration in Lodz, ul. Północna 42, 91–425 Łódź https://orcid.org/0009-0007-9832-7093
  • Krzysztof Jodłowski Hospital of the Ministry of Interior and Administration in Lodz, ul. Północna 42, 91–425 Łódź https://orcid.org/0009-0003-9041-2091
  • Ewa Dubniewicz Central Clinical Hospital of Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz https://orcid.org/0009-0007-4191-6794
  • Paula Majewska Central Clinical Hospital of Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz https://orcid.org/0009-0003-7934-397X
  • Alicja Staszek Central Clinical Hospital of Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz https://orcid.org/0009-0007-0323-8697

DOI:

https://doi.org/10.12775/JEHS.2025.79.57913

Keywords

diabetes mellitus, artificial intelligence, endocrinology

Abstract

Type I diabetes is an autoimmune disease in the course of which insulin levels are reduced and hyperglycemia occurs. Treatment options for type I diabetes have changed a lot over time. A large contribution to advances in the field of diabetes treatment has been made by artificial intelligence. Originally, the treatment consisted of multiple finger punctures per day and multiple insulin injections. But now, thanks to artificial intelligence technology, a number of solutions are available including continuous glucose monitors and, based on these, a decision support system. This makes it possible to reduce the number of finger pricks and the frequency of insulin administration. Above that, it makes it possible to tailor the treatment process to the patient, prepare personalized recommendations and respond quickly to changes in serum glucose levels.

References

1. Chaki J, Thillai Ganesh S, Cidham SK, Ananda Theertan S. Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. Journal of King Saud University - Computer and Information Sciences. 2022;34(6, Part B):3204-25.

2. Sharma N, Singh A, editors. Diabetes detection and prediction using machine learning/IoT: A survey. Advanced Informatics for Computing Research: Second International Conference, ICAICR 2018, Shimla, India, July 14–15, 2018, Revised Selected Papers, Part I 2; 2019: Springer.

3. Drake R, Vogl AW, Mitchell AW. Gray's anatomy for students E-book: Elsevier Health Sciences; 2009.

4. Wilkins LW, King J. Anatomy and Physiology: Lippincott Williams & Wilkins; 2002.

5. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3:17016.

6. Vonasek J, Larsen IM, Nikontovic A, Thorvig CM. A Novel Follow‐Up Model for Type 1 Diabetes in Children Leads to Higher Glycemic Control. Pediatric Diabetes. 2025;2025(1):6920068.

7. Mondal S, Pappachan JM. Current perspectives and the future of disease-modifying therapies in type 1 diabetes. World J Diabetes. 2025;16(1):99496.

8. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964-74.

9. Federation ID. 2015.

10. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.

11. Diaz-Valencia PA, Bougneres P, Valleron AJ. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health. 2015;15:255.

12. Shapiro SC, editor Encyclopedia of artificial intelligence, vols. 1 and 2 (2nd ed.)1992.

13. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019;9(4):e1312.

14. Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86(5):334-8.

15. Steimann F. On the use and usefulness of fuzzy sets in medical AI. Artif Intell Med. 2001;21(1-3):131-7.

16. Naskar S, Sharma S, Kuotsu K, Halder S, Pal G, Saha S, et al. The Biomedical Applications of Artificial Intelligence: An Overview of Decades of Research. Journal of Drug Targeting. 2025(just-accepted):1-85.

17. Alkalifah B, Shaheen MT, Alotibi J, Alsubait T, Alhakami H. Evaluation of machine learning-based regression techniques for prediction of diabetes levels fluctuations. Heliyon. 2025;11(1).

18. Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA, et al. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018. Diabetes Technol Ther. 2019;21(2):66-72.

19. Martens T, Beck RW, Bailey R, Ruedy KJ, Calhoun P, Peters AL, et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin: A Randomized Clinical Trial. Jama. 2021;325(22):2262-72.

20. Olczuk D, Priefer R. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes Metab Syndr. 2018;12(2):181-7.

21. Phillip M, Danne T, Shalitin S, Buckingham B, Laffel L, Tamborlane W, et al. Use of continuous glucose monitoring in children and adolescents. Pediatric diabetes. 2012;13(3):215-28.

22. Charpentier G, Benhamou PY, Dardari D, Clergeot A, Franc S, Schaepelynck-Belicar P, et al. The Diabeo software enabling individualized insulin dose adjustments combined with telemedicine support improves HbA1c in poorly controlled type 1 diabetic patients: a 6-month, randomized, open-label, parallel-group, multicenter trial (TeleDiab 1 Study). Diabetes Care. 2011;34(3):533-9.

23. Kirwan M, Vandelanotte C, Fenning A, Duncan MJ. Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. J Med Internet Res. 2013;15(11):e235.

24. Drion I, Pameijer LR, van Dijk PR, Groenier KH, Kleefstra N, Bilo HJ. The Effects of a Mobile Phone Application on Quality of Life in Patients With Type 1 Diabetes Mellitus: A Randomized Controlled Trial. J Diabetes Sci Technol. 2015;9(5):1086-91.

25. Skrøvseth SO, Årsand E, Godtliebsen F, Joakimsen RM. Data-Driven Personalized Feedback to Patients with Type 1 Diabetes: A Randomized Trial. Diabetes Technol Ther. 2015;17(7):482-9.

26. Senseonic. Senseonics announces fda approval of the eversense e3 continuous glucose monitoring system for use for up to 6 months 2022 [Available from: https: // www. senseonics. com/ investor-relations/ news-releases/ 2022/ 02-11-2022-120033959

27. Tyler NS, Jacobs PG. Artificial Intelligence in Decision Support Systems for Type 1 Diabetes. Sensors (Basel). 2020;20(11).

28. Veazie S, Winchell K, Gilbert J, Paynter R, Ivlev I, Eden KB, et al. Rapid Evidence Review of Mobile Applications for Self-management of Diabetes. J Gen Intern Med. 2018;33(7):1167-76.

29. Wu Y, Yao X, Vespasiani G, Nicolucci A, Dong Y, Kwong J, et al. Mobile App-Based Interventions to Support Diabetes Self-Management: A Systematic Review of Randomized Controlled Trials to Identify Functions Associated with Glycemic Efficacy. JMIR Mhealth Uhealth. 2017;5(3):e35.

30. D’Antoni F. Artificial Intelligence Models for the Management of Type 1 Diabetes. 2023.

Downloads

  • PDF

Published

2025-03-03

How to Cite

1.
ŁOSKOT, Wiktoria, SZWECH, Jan, MATCZAK, Mateusz, JASIŃSKI, Karol, BRODA, Aleksandra, HOKSA, Kacper, JODŁOWSKI, Krzysztof, DUBNIEWICZ, Ewa, MAJEWSKA, Paula and STASZEK, Alicja. Artificial intelligence in type 1 diabetes mellitus. Journal of Education, Health and Sport. Online. 3 March 2025. Vol. 79, p. 57913. [Accessed 27 December 2025]. DOI 10.12775/JEHS.2025.79.57913.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 79 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Wiktoria Łoskot, Jan Szwech, Mateusz Matczak, Karol Jasiński, Aleksandra Broda, Kacper Hoksa, Krzysztof Jodłowski, Ewa Dubniewicz, Paula Majewska, Alicja Staszek

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 371
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

diabetes mellitus, artificial intelligence, endocrinology
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop