Artificial Intelligence in ECG interpretation - review article
DOI:
https://doi.org/10.12775/JEHS.2025.80.57853Keywords
Artificial Intelligence, Deep Learning, Machine Learning, Electrocardiography, Arrhythmias, CardiacAbstract
Introduction and purpose
Developments in medical and information technology are leading to improvements in the quality of medical care. This paper aims to show how the development of artificial intelligence can affect more effective interpretation of ECG, thus contributing to greater efficiency for clinicians, and to describe the limitations and potential for further development of artificial intelligence in ECG interpretation.
Material and methods
A review paper using articles describing the application of artificial intelligence in ECG interpretation from 1997 to 2024. The search terms used to find publications were “artificial intelligence”, “ecg”, “deep learning”, “machine learning”, “neural networks”, “arrhythmia”, “left ventricular dysfunction” and “cardiomyopathy” using the Pubmed and Google Scholar databases.
Results
The present work has shown that artificial intelligence can be applied in the interpretation of ECGs for the following heart-related conditions: left ventricular dysfunction, atrial and ventricular arrhythmias, prediction of cardiovascular events, cardiomyopathy, valvular defect, monitoring of sleep quality, diagnosis of severe depression, presence of myocardial infarction, detection of the risk of transient myocardial ischemia, diagnosis of chronic maternal and fetal stress, and even determination of the age and sex of the subject. The biggest limitations of artificial intelligence are the need to verify the diagnosis made by the algorithm in order to detect possible errors. In addition, the use of personal data to train an artificial intelligence algorithm to diagnose specific medical conditions can be controversial, which can interfere with data protection rules. These data may contribute to a better understanding of artificial intelligence in ECG interpretation and its wider use in daily medical care practice.
References
Kagiyama N, Piccirilli M, Yanamala N, Shrestha S, Farjo PD, Casaclang-Verzosa G, Tarhuni WM, Nezarat N, Budoff MJ, Narula J, Sengupta PP. Machine Learning Assessment of Left Ventricular Diastolic Function Based on Electrocardiographic Features. J Am Coll Cardiol. 2020 Aug 25;76(8):930-941. doi: 10.1016/j.jacc.2020.06.061. PMID: 32819467.
Sun JY, Qiu Y, Guo HC, Hua Y, Shao B, Qiao YC, Guo J, Ding HL, Zhang ZY, Miao LF, Wang N, Zhang YM, Chen Y, Lu J, Dai M, Zhang CY, Wang RX. A method to screen left ventricular dysfunction through ECG based on convolutional neural network. J Cardiovasc Electrophysiol. 2021 Apr;32(4):1095-1102. doi: 10.1111/jce.14936. Epub 2021 Feb 15. PMID: 33565217.
Baxt WG, Shofer FS, Sites FD, Hollander JE. A neural computational aid to the diagnosis of acute myocardial infarction. Ann Emerg Med. 2002 Apr;39(4):366-73. doi: 10.1067/mem.2002.122705. PMID: 11919522.
Polak MJ, Zhou SH, Rautaharju PM, Armstrong WW, Chaitman BR. Using automated analysis of the resting twelve-lead ECG to identify patients at risk of developing transient myocardial ischaemia--an application of an adaptive logic network. Physiol Meas. 1997 Nov;18(4):317-25. doi: 10.1088/0967-3334/18/4/005. PMID: 9413865.
Mayourian J, La Cava WG, Vaid A, Nadkarni GN, Ghelani SJ, Mannix R, Geva T, Dionne A, Alexander ME, Duong SQ, Triedman JK. Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling. Circulation. 2024 Mar 19;149(12):917-931. doi: 10.1161/CIRCULATIONAHA.123.067750. Epub 2024 Feb 5. PMID: 38314583; PMCID: PMC10948312.
Khurshid S, Friedman S, Reeder C, Di Achille P, Diamant N, Singh P, Harrington LX, Wang X, Al-Alusi MA, Sarma G, Foulkes AS, Ellinor PT, Anderson CD, Ho JE, Philippakis AA, Batra P, Lubitz SA. ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation. 2022 Jan 11;145(2):122-133. doi: 10.1161/CIRCULATIONAHA.121.057480. Epub 2021 Nov 8. PMID: 34743566; PMCID: PMC8748400.
Sarkar P, Lobmaier S, Fabre B, González D, Mueller A, Frasch MG, Antonelli MC, Etemad A. Detection of maternal and fetal stress from the electrocardiogram with self-supervised representation learning. Sci Rep. 2021 Dec 17;11(1):24146. doi: 10.1038/s41598-021-03376-8. PMID: 34921162; PMCID: PMC8683397.
Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G, Pellikka PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Kapa S. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol. 2019 Sep;12(9):e007284. doi: 10.1161/CIRCEP.119.007284. Epub 2019 Aug 27. PMID: 31450977; PMCID: PMC7661045.
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904
Cheng, Qiangli, Dong, Yajun, Da Vinci Robot-Assisted Video Image Processing under Artificial Intelligence Vision Processing Technology, Computational and Mathematical Methods in Medicine, 2022, 2752444, 10 pages, 2022. https://doi.org/10.1155/2022/2752444
Lång K, Josefsson V, Larsson AM, Larsson S, Högberg C, Sartor H, Hofvind S, Andersson I, Rosso A. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 2023 Aug;24(8):936-944. doi: 10.1016/S1470-2045(23)00298-X. PMID: 37541274.
Upton R, Mumith A, Beqiri A, Parker A, Hawkes W, Gao S, Porumb M, Sarwar R, Marques P, Markham D, Kenworthy J, O'Driscoll JM, Hassanali N, Groves K, Dockerill C, Woodward W, Alsharqi M, McCourt A, Wilkes EH, Heitner SB, Yadava M, Stojanovski D, Lamata P, Woodward G, Leeson P. Automated Echocardiographic Detection of Severe Coronary Artery Disease Using Artificial Intelligence. JACC Cardiovasc Imaging. 2022 May;15(5):715-727. doi: 10.1016/j.jcmg.2021.10.013. Epub 2021 Dec 15. PMID: 34922865.
Zhang Y, Feng Y, Sun J, Zhang L, Ding Z, Wang L, Zhao K, Pan Z, Li Q, Guo N, Xie X. Fully automated artificial intelligence-based coronary CT angiography image processing: efficiency, diagnostic capability, and risk stratification. Eur Radiol. 2024 Aug;34(8):4909-4919. doi: 10.1007/s00330-023-10494-6. Epub 2024 Jan 9. PMID: 38193925.
Hopkins CB, Suleman J, Cook C. An artificial neural network for the electrocardiographic diagnosis of left ventricular hypertrophy. Crit Rev Biomed Eng. 2000;28(3 - 4):435-8. doi: 10.1615/critrevbiomedeng.v28.i34.140. PMID: 11108211.
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7. PMID: 30617318.
Yao X, Rushlow DR, Inselman JW, McCoy RG, Thacher TD, Behnken EM, Bernard ME, Rosas SL, Akfaly A, Misra A, Molling PE, Krien JS, Foss RM, Barry BA, Siontis KC, Kapa S, Pellikka PA, Lopez-Jimenez F, Attia ZI, Shah ND, Friedman PA, Noseworthy PA. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. 2021 May;27(5):815-819. doi: 10.1038/s41591-021-01335-4. Epub 2021 May 6. PMID: 33958795.
Rushlow DR, Croghan IT, Inselman JW, Thacher TD, Friedman PA, Yao X, Pellikka PA, Lopez-Jimenez F, Bernard ME, Barry BA, Attia IZ, Misra A, Foss RM, Molling PE, Rosas SL, Noseworthy PA. Clinician Adoption of an Artificial Intelligence Algorithm to Detect Left Ventricular Systolic Dysfunction in Primary Care. Mayo Clin Proc. 2022 Nov;97(11):2076-2085. doi: 10.1016/j.mayocp.2022.04.008. PMID: 36333015.
Shimojo M, Inden Y, Yanagisawa S, Suzuki N, Tsurumi N, Watanabe R, Nakagomi T, Okajima T, Suga K, Tsuji Y, Murohara T. A novel practical algorithm using machine learning to differentiate outflow tract ventricular arrhythmia origins. J Cardiovasc Electrophysiol. 2023 Mar;34(3):627-637. doi: 10.1111/jce.15823. Epub 2023 Jan 24. PMID: 36651347.
Gruwez H, Barthels M, Haemers P, Verbrugge FH, Dhont S, Meekers E, Wouters F, Nuyens D, Pison L, Vandervoort P, Pierlet N. Detecting Paroxysmal Atrial Fibrillation From an Electrocardiogram in Sinus Rhythm: External Validation of the AI Approach. JACC Clin Electrophysiol. 2023 Aug;9(8 Pt 3):1771-1782. doi: 10.1016/j.jacep.2023.04.008. Epub 2023 Jun 21. PMID: 37354171.
Noseworthy PA, Attia ZI, Behnken EM, Giblon RE, Bews KA, Liu S, Gosse TA, Linn ZD, Deng Y, Yin J, Gersh BJ, Graff-Radford J, Rabinstein AA, Siontis KC, Friedman PA, Yao X. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. Lancet. 2022 Oct 8;400(10359):1206-1212. doi: 10.1016/S0140-6736(22)01637-3. Epub 2022 Sep 27. PMID: 36179758.
Wu H, Sawada T, Goto T, Yoneyama T, Sasano T, Asada K. Edge AI Model Deployed for Real-Time Detection of Atrial Fibrillation Risk during Sinus Rhythm. J Clin Med. 2024 Apr 11;13(8):2218. doi: 10.3390/jcm13082218. PMID: 38673490; PMCID: PMC11051059.
Hill NR, Groves L, Dickerson C, Boyce R, Lawton S, Hurst M, Pollock KG, Sugrue DM, Lister S, Arden C, Davies DW, Martin AC, Sandler B, Gordon J, Farooqui U, Clifton D, Mallen C, Rogers J, Camm AJ, Cohen AT. Identification of undiagnosed atrial fibrillation using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI) in primary care: cost-effectiveness of a screening strategy evaluated in a randomized controlled trial in England. J Med Econ. 2022 Jan-Dec;25(1):974-983. doi: 10.1080/13696998.2022.2102355. PMID: 35834373.
Fu W, Li R. Diagnostic performance of a wearing dynamic ECG recorder for atrial fibrillation screening: the HUAMI heart study. BMC Cardiovasc Disord. 2021 Nov 20;21(1):558. doi: 10.1186/s12872-021-02363-1. PMID: 34800984; PMCID: PMC8606080.
Huang S, Zhao T, Liu C, Qin A, Dong S, Yuan B, Xing W, Guo Z, Huang X, Cha Y, Cao J. Portable Device Improves the Detection of Atrial Fibrillation After Ablation. Int Heart J. 2021 Jul 30;62(4):786-791. doi: 10.1536/ihj.21-067. Epub 2021 Jul 17. PMID: 34276021.
Coult J, Yang BY, Kwok H, Kutz JN, Boyle PM, Blackwood J, Rea TD, Kudenchuk PJ. Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest. Circulation. 2023 Jul 25;148(4):327-335. doi: 10.1161/CIRCULATIONAHA.122.063651. Epub 2023 Jun 2. PMID: 37264936.
Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017 Oct 13;121(9):1092-1101. doi: 10.1161/CIRCRESAHA.117.311312. Epub 2017 Aug 9. PMID: 28794054; PMCID: PMC5640485.
Adedinsewo DA, Morales-Lara AC, Afolabi BB, Kushimo OA, Mbakwem AC, Ibiyemi KF, Ogunmodede JA, Raji HO, Ringim SH, Habib AA, Hamza SM, Ogah OS, Obajimi G, Saanu OO, Jagun OE, Inofomoh FO, Adeolu T, Karaye KM, Gaya SA, Alfa I, Yohanna C, Venkatachalam KL, Dugan J, Yao X, Sledge HJ, Johnson PW, Wieczorek MA, Attia ZI, Phillips SD, Yamani MH, Tobah YB, Rose CH, Sharpe EE, Lopez-Jimenez F, Friedman PA, Noseworthy PA, Carter RE; SPEC-AI Nigeria Investigators. Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nat Med. 2024 Oct;30(10):2897-2906. doi: 10.1038/s41591-024-03243-9. Epub 2024 Sep 2. PMID: 39223284; PMCID: PMC11485252.
Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, Demuth SJ, Ackerman MJ, Gersh BJ, Arruda-Olson AM, Geske JB, Asirvatham SJ, Lopez-Jimenez F, Nishimura RA, Friedman PA, Noseworthy PA. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol. 2020 Feb 25;75(7):722-733. doi: 10.1016/j.jacc.2019.12.030. PMID: 32081280.
Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko WY, Murphree DH, Michelena HI, Enriquez-Sarano M, Carter RE, Johnson PW, Noseworthy PA, Lopez-Jimenez F, Oh JK. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J. 2021 Aug 7;42(30):2885-2896. doi: 10.1093/eurheartj/ehab153. PMID: 33748852.
Tsaban G, Lee E, Wopperer S, Abbasi M, Yu HT, Kane GC, Lopez-Jimenez F, Pislaru SV, Nkomo VT, Deshmukh AJ, Asirvatham SJ, Noseworthy PA, Friedman PA, Attia Z, Oh JK. Using Electrocardiogram to Assess Diastolic Function and Prognosis in Mitral Regurgitation. J Am Coll Cardiol. 2024 Dec 3;84(23):2278-2289. doi: 10.1016/j.jacc.2024.06.054. PMID: 39603748.
Aktaruzzaman M, Rivolta MW, Karmacharya R, Scarabottolo N, Pugnetti L, Garegnani M, Bovi G, Scalera G, Ferrarin M, Sassi R. Performance comparison between wrist and chest actigraphy in combination with heart rate variability for sleep classification. Comput Biol Med. 2017 Oct 1;89:212-221. doi: 10.1016/j.compbiomed.2017.08.006. Epub 2017 Aug 8. PMID: 28841459.
Byun S, Kim AY, Jang EH, Kim S, Choi KW, Yu HY, Jeon HJ. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Comput Biol Med. 2019 Sep;112:103381. doi: 10.1016/j.compbiomed.2019.103381. Epub 2019 Aug 4. PMID: 31404718.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Łukasz Fussek, Jagoda Niewiadomska, Borys Bondos, Aleksandra Stępień, Alicja Paluch, Jakub Skrzypek, Aleksandra Niekra, Robert Kochan, Ewelina Wieczorek, Kacper Lee

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 58
Number of citations: 0