Modern Approach to the Treatment of Acute Respiratory Failure – from nasal cannula to ECMO
DOI:
https://doi.org/10.12775/JEHS.2025.40.57771Keywords
respiratory failure, Non-invasive ventilation NIV, extracorporeal membrane oxygenation, intubationAbstract
Introduction
Respiratory failure is a major healthcare issue, significantly threatening patient life. Early diagnosis and appropriate oxygen therapy are critical for improving prognosis. This article aims to summarize and compare current oxygen therapy methods and their clinical indications.
Material and Methods
Oxygen therapy methods were discussed in the context of acute respiratory failure in the emergency department. The therapies reviewed included conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), noninvasive ventilation (NIV), invasive ventilation, and extracorporeal membrane oxygenation (ECMO). Indications were based on the latest guidelines from the European Respiratory Society, American Thoracic Society, and other medical organizations.
Results
High-flow nasal oxygen therapy (HFNOT) is superior to conventional oxygen therapy in treating acute hypoxemic respiratory failure, reducing the need for therapy escalation. Noninvasive ventilation (NIV) is effective for patients with respiratory acidosis and COPD exacerbations. ECMO is a life-saving option when other treatments fail, but its use is limited to patients with reversible causes of respiratory failure.
Conclusions
The choice of oxygen therapy depends on the patient's clinical condition. Modern approaches, such as HFNOT and NIV, offer advantages in reducing mortality and the need for invasive ventilation in acute respiratory failure, compared to traditional therapies. ECMO remains effective in severe cases but is reserved for specific indications. Further research is needed to optimize oxygen therapy use, focusing on reducing mortality and complications.
References
1. National Health Fund Statistics – Health Service Statistics. Accessed December 25, 2024. https://statystyki.nfz.gov.pl/Benefits/1a?S.Section=D+-+Choroby+uk%C5%82adu+oddechowego&S.Name=D52+NIEWYDOLNO%C5%9A%C4%86+ODDECHOWA&S.Catalog=1a&S.Year=2023&S.SelectedTab=BasicData&search=true
2. Mirabile VS, Shebl E, Sankari A, Burns B. Respiratory Failure in Adults. Published online June 11, 2023. Accessed December 25, 2024. https://www.ncbi.nlm.nih.gov/books/NBK526127/
3. Helms J, Catoire P, Abensur Vuillaume L, et al. Oxygen therapy in acute hypoxemic respiratory failure: guidelines from the SRLF-SFMU consensus conference. Annals of Intensive Care 2024 14:1. 2024;14(1):1-15. doi:10.1186/S13613-024-01367-2
4. Leone M, Einav S, Chiumello D, et al. Noninvasive respiratory support in the hypoxaemic peri-operative/periprocedural patient: a joint ESA/ESICM guideline. Intensive Care Med. 2020;46(4):697-713. doi:10.1007/S00134-020-05948-0
5. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. Comparison of the SpO2/FIO2 ratio and the PaO 2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410-417. doi:10.1378/chest.07-0617
6. Zhao X, Xiao H, Dai F, Brodie D, Meng L. Classification and effectiveness of different oxygenation goals in mechanically ventilated critically ill patients: network meta-analysis of randomised controlled trials. European Respiratory Journal. 2021;58(3). doi:10.1183/13993003.02928-2020
7. Barrot L, Asfar P, Mauny F, et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2020;382(11):999-1008. doi:10.1056/NEJMOA1916431
8. Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453-1463. doi:10.1007/S00134-017-4890-1
9. Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207-1215. doi:10.1164/RCCM.201605-0916OC
10. Vargas F, Saint-Leger M, Boyer A, Bui NH, Hilbert G. Physiologic Effects of High-Flow Nasal Cannula Oxygen in Critical Care Subjects. Respir Care. 2015;60(10):1369-1376. doi:10.4187/RESPCARE.03814
11. Nishimura M. High-flow nasal cannula oxygen therapy in adults. J Intensive Care. 2015;3(1):1-8. doi:10.1186/S40560-015-0084-5
12. Wyszkowski M, Jaremek A, Kępa J, et al. The Role of high flow nasal therapy in Intensive Care Units. Journal of Education, Health and Sport. 2023;43(1):178-193. doi:10.12775/JEHS.2023.43.01.014
13. Parke RL, Eccleston ML, McGuinness SP. The Effects of Flow on Airway Pressure During Nasal High-Flow Oxygen Therapy. Respir Care. 2011;56(8):1151-1155. doi:10.4187/RESPCARE.01106
14. Chanques G, Riboulet F, Molinari N, et al. Comparison of three high flow oxygen therapy delivery devices: a clinical physiological cross-over study. Minerva Anestesiol. 2013;79(12):1344-1355. .
15. Cortegiani A, Accurso G, Mercadante S, Giarratano A, Gregoretti C. High flow nasal therapy in perioperative medicine: From operating room to general ward. BMC Anesthesiol. 2018;18(1):1-8. doi:10.1186/S12871-018-0623-4
16. Med JJW, Faarc R. High-Flow Oxygen Administration by Nasal Cannula for Adult and Perinatal Patients. Respir Care. 2013;58(1):98-122. doi:10.4187/RESPCARE.01941
17. Sim MAB, Dean P, Kinsella J, Black R, Carter R, Hughes M. Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated*. Anaesthesia. 2008;63(9):938-940. doi:10.1111/J.1365-2044.2008.05536.X
18. Oczkowski S, Ergan B, Bos L, et al. ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. European Respiratory Journal. 2022;59(4). doi:10.1183/13993003.01574-2021
19. Nasiłowski J.: Application of high flow nasal oxygen therapy in acute respiratory failure. Discussion of the guidelines from European Respiratory Society 2021. Med. Prakt. 2022; 1: 36 – 44.
20. Thomas Barchfeld med, Kloster Grafschaft F, Heinrich Becker med F, et al. Clinical Practice Guideline: Non-Invasive Mechanical Ventilation as Treatment of Acute Respiratory Failure. Dtsch Arztebl Int. 2008;105(24):424. doi:10.3238/ARZTEBL.2008.0424
21. Macintyre NR. Physiologic Effects of Noninvasive Ventilation. Respir Care. 2019;64(6):617-628. doi:10.4187/RESPCARE.06635
22. Baudouin S, Turner L, Blumenthal S, et al. Non-invasive ventilation in acute respiratory failure. Thorax. 2002;57(3):192. doi:10.1136/THORAX.57.3.192
23. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. European Respiratory Journal. 2017;50(2):1602426. doi:10.1183/13993003.02426-2016
24. Gong Y, Sankari A. Noninvasive Ventilation. [Updated 2022 Dec 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK578188/.
25. Plant PK, Owen JL, Parrott S, Elliott MW. Cost effectiveness of ward based non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease: economic analysis of randomised controlled trial. BMJ. 2003;326(7396):956. doi:10.1136/BMJ.326.7396.956
26. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151(6):1799-1806. doi:10.1164/AJRCCM.151.6.7767523
27. Bott J, Keilty SEJ, Elliott MW, et al. Randomised controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease. Lancet. 1993;341(8860):1555-1557. doi:10.1016/0140-6736(93)90696-E
28. Walter JM, Corbridge TC, Singer BD. Invasive Mechanical Ventilation. South Med J. 2018;111(12):746. doi:10.14423/SMJ.0000000000000905
29. Avva U, Lata JM, Kiel J. Airway Management. [Updated 2023 May 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470403/.
30. Pisano A, Yavorovskiy A, Verniero L, Landoni G. Indications for Tracheal Intubation in Patients With Coronavirus Disease 2019 (COVID-19). J Cardiothorac Vasc Anesth. 2020;35(5):1276. doi:10.1053/J.JVCA.2020.11.062
31. Davidson AC, Banham S, Elliott M, et al. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax. 2016;71(Suppl 2):ii1-ii35. doi:10.1136/THORAXJNL-2015-208209
32. Contou D, Fragnoli C, Córdoba-Izquierdo A, Boissier F, Brun-Buisson C, Thille AW. Noninvasive Ventilation for Acute Hypercapnic Respiratory Failure: Intubation Rate in an Experienced Unit. Respir Care. 2013;58(12):2045-2052. doi:10.4187/RESPCARE.02456
33. Laghi F, Shaikh H, Caccani N. Basing intubation of acutely hypoxemic patients on physiologic principles. Ann Intensive Care. 2024;14(1):1-11. doi:10.1186/S13613-024-01327-W
34. Tulaimat A. Examining the intubation decision in randomised clinical trials. European Respiratory Journal. 2021;57(3). doi:10.1183/13993003.00051-2021
35. Wermke M, Schiemanck S, Höffken G, Ehninger G, Bornhäuser M, Illmer T. Respiratory failure in patients undergoing allogeneic hematopoietic SCT—a randomized trial on early non-invasive ventilation based on standard care hematology wards. Bone Marrow Transplantation 2012 47:4. 2011;47(4):574-580. doi:10.1038/bmt.2011.160
36. Maggiore SM, Jaber S, Grieco DL, et al. High-Flow Versus VenturiMask Oxygen Therapy to Prevent Reintubation in Hypoxemic Patients after Extubation: A Multicenter Randomized Clinical Trial. Am J Respir Crit Care Med. 2022;206(12):1452-1462. doi:10.1164/RCCM.202201-0065OC
37. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2016;315(22):2435-2441. doi:10.1001/JAMA.2016.6338
38. Hernández G, Vaquero C, Colinas L, et al. Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients: A Randomized Clinical Trial. JAMA. 2016;316(15):1565-1574. doi:10.1001/JAMA.2016.14194
39. World Health Organization. Clinical care for severe acute respiratory infection: toolkit: COVID-19 adaptation, update 2022. Accessed January 7, 2025. https://www.who.int/europe/publications/i/item/WHO-2019-nCoV-SARI-toolkit-2022-1
40. Osman A, Via G, Sallehuddin RM, et al. Helmet continuous positive airway pressure vs. high flow nasal cannula oxygen in acute cardiogenic pulmonary oedema: a randomized controlled trial. Eur Heart J Acute Cardiovasc Care. 2021;10(10):1103-1111. doi:10.1093/EHJACC/ZUAB078
41. De Vita N, Scotti L, Cammarota G, et al. Predictors of intubation in COVID-19 patients treated with out-of-ICU continuous positive airway pressure. Pulmonology. 2022;28(3):173-180. doi:10.1016/J.PULMOE.2020.12.010
42. Ahmad I, Jeyarajah J, Nair G, et al. A prospective, observational, cohort study of airway management of patients with COVID-19 by specialist tracheal intubation teams. Canadian Journal of Anesthesia. 2021;68(2):196-203. doi:10.1007/S12630-020-01804-3
43. Tan D, Walline JH, Ling B, et al. High-flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease patients after extubation: A multicenter, randomized controlled trial. Crit Care. 2020;24(1):1-10. doi:10.1186/S13054-020-03214-9
44. Kalita J, Kumar M, Misra UK. Serial single breath count is a reliable tool for monitoring respiratory functions in Guillain-Barré Syndrome. Journal of Clinical Neuroscience. 2020;72:50-56. doi:10.1016/j.jocn.2020.01.032
45. Antonelli M, Conti G, Rocco M, et al. A Comparison of Noninvasive Positive-Pressure Ventilation and Conventional Mechanical Ventilation in Patients with Acute Respiratory Failure. New England Journal of Medicine. 1998;339(7):429-435. doi:10.1056/NEJM199808133390703/ASSET/55FA7B6B-E07A-45D8-AF6B-0B6E957091D2
46. Squadrone V, Massaia M, Bruno B, et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. Intensive Care Med. 2010;36(10):1666-1674. doi:10.1007/S00134-010-1934-1
47. Kluge S, Janssens U, Welte T, Weber-Carstens S, Marx G, Karagiannidis C. German recommendations for critically ill patients with COVID 19. Med Klin Intensivmed Notfmed. 2020;115(3):111-114. doi:10.1007/S00063-020-00689-W
48. Makdisi G, Wang IW. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015;7(7):E166. doi:10.3978/J.ISSN.2072-1439.2015.07.17
49. Ali J, Vuylsteke A. Extracorporeal membrane oxygenation: indications, technique and contemporary outcomes. Heart. 2019;105(18):1437-1443. doi:10.1136/HEARTJNL-2017-311928
50. Krystian Ś, Paulina K, Patrycja Ł, et al. Venovenous extracorporeal membrane oxygenation (VV ECMO) in community-acquired pneumonia caused by Klebsiella pneumoniae. What went wrong? Journal of Education, Health and Sport. 2019;9(8):738-746. doi:10.5281/zenodo.3407541
51. Staley EM, Wool GD, Pham HP, Dalton HJ, Wong ECC. Extracorporeal corporeal membrane oxygenation: indications, technical considerations, and future trends. Ann Blood. 2022;7(0). doi:10.21037/AOB-21-85
52. Özlüer YE, Avcıl M, Ege D, Şeker Yaşar K. Emergency department extracorporeal membrane oxygenation may also include noncardiac arrest patients. Turk J Med Sci. 2021;51(2):555. doi:10.3906/SAG-2004-308
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Szymon Gruszka, Anna Wolff, Karolina Bryła, Marcelina Szewczyk, Helena Udziela-Gil, Dominika Lewandowska, Dominika Rosińska-Lewandoska, Julia Ufnal, Klaudia Drewko, Michał Olkowski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 25
Number of citations: 0