Immunodeficiency, Centromeric Instability, and Facial Dysmorphism (ICF) Syndrome: How HSCT alters the impairment of the DNA methylation process
DOI:
https://doi.org/10.12775/JEHS.2025.78.57736Keywords
Immunodeficiency–centromeric instability–facial dysmorphism (ICF) syndrome, Inborn Errors of Immunity, Hematopoietic stem cell transplantation, Combined immunodeficiencyAbstract
Introduction and purpose
In 2024, the EBMT Inborn Errors Working Party published a study that confirmed the beneficial role of hematopoietic stem cell transplantation (HSCT) in patients with immunodeficiency, centromeric instability, and facial dysmorphism (ICF) syndrome. In this article, we aim to present the characteristics of ICF in an accessible way, including its genetic background, clinical presentation, immunological alterations, and treatment options.
A brief description of the state of knowledge
In recent years, published reviews and series of cases have expanded the range of known symptoms and complications occurring in patients with ICF. Our understanding of immunological alterations in ICF evolved from isolated defects of immunoglobulin production to a comprehensive model, which involves impairment of cellular immunity. Advances in molecular biology and genetics enabled insights into the DNA methylation machinery, which allowed us to gain a more precise understanding of the pathogenesis of ICF and also opened up opportunities for the development of new therapeutic options.
Summary
Inborn errors of immunity (IEI), such as ICF, are diagnosed at an early stage of life. It enables effective treatment with longer survival of the patients. It means that healthcare professionals are increasingly likely to encounter such patients in their clinical practice. Thus, it is crucial to inform about the usage of the HSCT in ICF syndrome and spread awareness of potential new treatment options, that may emerge in the near future.
References
1. Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, et al. Clinical, Immunologic and Molecular Spectrum of Patients with Immunodeficiency, Centromeric Instability, and Facial Anomalies (ICF) Syndrome: A Systematic Review. Endocr Metab Immune Disord Drug Targets. 2020;21(4):664–72. https://doi.org/10.2174/1871530320666200613204426.
2. Hulten M. Selective Somatic Pairing and Fragility at 1q12 in a Boy with Common Variable Immuno Deficiency. Clin Genet. 1978;14(5):294–294. https://doi.org/10.1111/j.1399-0004.1978.tb02170.x.
3. Picard C., Velasco G. Orphanet: ICF syndrome. 2023. https://www.orpha.net/en/disease/detail/2268?name=ICF&mode=name (Access: 10.01.2025).
4. Vukic M, Daxinger L. DNA methylation in disease: Immunodeficiency, Centromeric instability, Facial anomalies syndrome. Essays Biochem. 2019; 63(6):773. https://doi.org/10.1042/EBC20190035.
5. Lullo V, Cecere F, Batti S, Allegretti S, Morone B, Fioriniello S, et al. A novel iPSC-based model of ICF syndrome subtype 2 recapitulates the molecular phenotype of ZBTB24 deficiency. Front Immunol. 2024;15:1419748. https://doi.org/10.3389/fimmu.2024.1419748.
6. Gisselsson D, Shao C, Tuck-Muller CM, Sogorovic S, Pålsson E, Smeets D, et al. Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma. 2005;114(2):118–26. https://doi.org/10.1007/s00412-005-0343-7.
7. Hagleitner MM, Lankester A, Maraschio P, Hultén M, Fryns JP, Schuetz C, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9. https://doi.org/10.1136/jmg.2007.053397.
8. Weemaes CM, Van Tol MJ, Wang J, Van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25. https://doi.org/10.1038/ejhg.2013.40.
9. Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nature Communications. 2015;6(1):1–8. https://doi.org/10.1038/ncomms12003.
10. Horii T, Tamura D, Morita S, Kimura M, Hatada I. Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells Using the CRISPR System. Int J Mol Sci. 2013;14(10):19774–81. https://doi.org/10.3390/ijms141019774.
11. Younesian S, Mohammadi MH, Younesian O, Momeny M, Ghaffari SH, Bashash D. DNA methylation in human diseases. Heliyon. 2024;10(11):e32366. https://doi.org/10.1016/j.heliyon.2024.e32366.
12. Vukic M, Chouaref J, Della Chiara V, Dogan S, Ratner F, Hogenboom JZM, et al. CDCA7-associated global aberrant DNA hypomethylation translates to localized, tissue-specific transcriptional responses. Sci Adv. 2024;10(6):eadk3384. https://doi.org/10.1126/sciadv.adk3384.
13. Unoki M, Velasco G, Kori S, Arita K, Daigaku Y, Au Yeung WK, et al. Novel compound heterozygous mutations in UHRF1 are associated with atypical immunodeficiency, centromeric instability and facial anomalies syndrome with distinctive genome-wide DNA hypomethylation. Hum Mol Genet. 2023;32(9):1439–56. https://doi.org/10.1093/hmg/ddac291.
14. Lankester AC, Albert MH, Booth C, Gennery AR, Güngör T, Hönig M, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant.. 2021;56(9):2052–62. https://doi.org/10.1038/s41409-021-01378-8.
15. Berghuis D, Mehyar LS, Abu-Arja R, Albert MH, Barnum JL, von Bernuth H, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Immunodeficiency-Centromeric Instability-Facial Dysmorphism (ICF) Syndrome: an EBMT/ESID Inborn Errors Working Party Study. J Clin Immunol. 2024;44(8):182. https://doi.org/10.1007/s10875-024-01786-7.
16. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607. https://doi.org/10.1038/s41580-019-0159-6.
17. Alghamdi HA, Tashkandi SA, Alidrissi EM, Aledielah RD, AlSaidi KA, Alharbi ES, et al. Three Types of Immunodeficiency, Centromeric Instability, and Facial Anomalies (ICF) Syndrome Identified by Whole-Exome Sequencing in Saudi Hypogammaglobulinemia Patients: Clinical, Molecular, and Cytogenetic Features. J Clin Immunol. 2018;38(8):847–53. https://doi.org/10.1007/s10875-018-0569-9.
18. Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17(5):690–709. https://doi.org/10.1093/hmg/ddm341.
19. Kniffin CL, McKusick VA. IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES SYNDROME 1; ICF1 - OMIM. https://www.omim.org/entry/242860#11 (Access 10.01.2025).
20. Toubiana S, Velasco G, Chityat A, Kaindl AM, Hershtig N, Tzur-Gilat A, et al. Subtelomeric methylation distinguishes between subtypes of Immunodeficiency, Centromeric instability and Facial anomalies syndrome. Hum Mol Genet. 2018;27(20):3568–81. https://doi.org/10.1093/hmg/ddy265.
21. Velasco G, Walton EL, Sterlin D, Hédouin S, Nitta H, Ito Y, et al. Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients: Implications for diagnosis and etiology. Orphanet J Rare Dis. 2014; 9(1):1–8. https://doi.org/10.1186/1750-1172-9-56.
22. Hansen RS, Stöger R, Wijmenga C, Stanek AM, Canfield TK, Luo P, et al. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum Mol Genet. 2000;9(18):2575–87. https://doi.org/10.1093/hmg/9.18.2575.
23. Unoki M, Sasaki H. The UHRF protein family in epigenetics, development, and carcinogenesis. Proc Jpn Acad Ser B Phys Biol Sci. 2022;98(8):401. https://doi.org/10.2183/pjab.98.021.
24. De Greef JC, Wang J, Balog J, Den Dunnen JT, Frants RR, Straasheijm KR, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet. 2011;88(6):796–804. https://doi.org/10.1016/j.ajhg.2011.
25. Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med. 2020;217(11):e20191688. https://doi.org/10.1084/jem.20191688.
26. Hamosh A, Gross MB. ZINC FINGER- AND BTB DOMAIN-CONTAINING PROTEIN 24; ZBTB24 – OMIM. 2017. https://www.omim.org/entry/614064 (Access: 10.01.2025)
27. Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci U S A. 2018; 115(5):E876–85. https://doi.org/10.1073/pnas.1717509115.
28. Lige B, Rasooly RS. HELICASE, LYMPHOID-SPECIFIC; HELLS – OMIM. 2019. https://www.omim.org/entry/603946. (Access: 10.01.2025).
29. Lige B, Goldstein JL. CELL DIVISION CYCLE-ASSOCIATED PROTEIN 7; CDCA7 – OMIM. 2019. https://www.omim.org/entry/609937. (Access: 10.01.2025).
30. Peixoto E, Khan A, Lewis ZA, Contreras-Galindo R, Czaja W. The Chromatin Remodeler HELLS: A New Regulator in DNA Repair, Genome Maintenance, and Cancer. Int J Mol Sci. 2022;23(16):9313. https://doi.org/10.3390/ijms23169313.
31. Unoki M. Exploring the intersection of epigenetics, DNA repair, and immunology from studies of ICF syndrome, an inborn error of immunity. Front Immunol. 2024;15:1405022. https://doi.org/10.3389/fimmu.2024.1445756.
32. Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and Control of V(D)J Recombination versus Class Switch Recombination: Similarities and Differences. Adv Immunol. 2005;86:43–112. https://doi.org/10.1016/S0065-2776(04)86002-4.
33. Unoki M, Funabiki H, Velasco G, Francastel C, Sasaki H. CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. J Clin Invest. 2019;129(1):78-92. https://doi.org/10.1172/JCI99751.
34. Jiang YL, Rigolet M, Bourc’his D, Nigon F, Bokesoy I, Fryns JP, et al. DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum Mutat.2005;25(1):56–63. https://doi.org/10.1002/humu.20113.
35. Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, et al. Genetic, Cellular and Clinical Features of ICF Syndrome: a French National Survey. J Clin Immunol. 2016 36(2):149–59. https://doi.org/10.1007/s10875-016-0240-2.
36. Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1(1):1–9. https://doi.org/10.1186/1750-1172-1-2.
37. Nielsen J V., Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex. Cerebral Cortex. 2014;24(5):1216–29. https://doi.org/10.1093/cercor/bhs400.
38. Bilgic Eltan S, Nain E, Catak MC, Ezen E, Sefer AP, Karimi N, et al. Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome. J Clin Immunol. 2023;44(1):26. https://doi.org/10.1007/s10875-023-01620-6.
39. von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, et al. Combined immunodeficiency develops with age in Immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9(1):116. https://doi.org/10.1186/s13023-014-0116-6.
40. Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol. 2021;12:713294. https://doi.org/10.3389/fimmu.2021.713294.
41. Sogkas G, Dubrowinskaja N, Bergmann AK, Lentes J, Ripperger T, Fedchenko M, et al. Progressive Immunodeficiency with Gradual Depletion of B and CD4+ T Cells in Immunodeficiency, Centromeric Instability and Facial Anomalies Syndrome 2 (ICF2). Diseases. 2019;7(2):34. https://doi.org/10.3390/diseases7020034.
42. Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, et al. Clinical and Immunological Characterization of ICF Syndrome in Japan. J Clin Immunol. 2018;38(8):927–37. https://doi.org/10.1007/s10875-018-0559-y.
43. Burk CM, Coffey KE, Mace EM, Bostwick BL, Chinn IK, Coban-Akdemir ZH, et al. Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract. 2019;8(3):1103. https://doi.org/10.1016/j.jaip.2019.08.040.
44. Banday AZ, Jindal AK, Kaur A, Kumar Y, Nameirakpam J, Patra PK, et al. A young girl with hypogammaglobulinemia and granulomatous hepatitis caused by a novel mutation in ZBTB24 gene: A case based analysis. Immunobiology. 2020;225(3):151912. https://doi.org/10.1016/j.imbio.2020.151912.
45. Homa P, Homa W, Janiuk U, Cienkusz M, Bielecka T, Krenke K, et al. Myelodysplastic syndrome and pulmonary alveolar proteinosis in a 6-year-old girl with mutation of the ZBTB24 gene. Acta Haematol Pol 2023;54(5):302–7. https://doi.org/10.5603/ahp.95371.
46. Banday AZ, Jindal AK, Kaur A, Kumar Y, Nameirakpam J, Patra PK, et al. A young girl with hypogammaglobulinemia and granulomatous hepatitis caused by a novel mutation in ZBTB24 gene: A case based analysis. Immunobiology. 2020;225(3):151912. https://doi.org/10.1016/j.imbio.2020.151912.
47. Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341-4. https://doi.org/10.1542/peds.2007-0640.
48. Cunningham-Rundles C, Cunningham-Rundles C. Key aspects for successful immunoglobulin therapy of primary immunodeficiencies. Clin Exp Immunol. 2011;164(Suppl2):16–9. https://doi.org/10.1111/j.1365-2249.2011.04390.x.
49. Segundo GRS, Condino-Neto A. Treatment of patients with immunodeficiency: Medication, gene therapy, and transplantation. J Pediatr (Rio J). 2021;97 (Suppl1):S17–23. https://doi.org/10.1016/j.jped.2020.10.005.
50. Harnisch E, Buddingh EP, Thijssen PE, Brooks AS, Driessen GJ, Kersseboom R, et al. Hematopoietic stem cell transplantation in a patient with ICF2 syndrome presenting with EBV-induced hemophagocytic lymphohystiocytosis. Transplantation. 2016;100(7):e35–6. https://doi.org/10.1097/TP.0000000000001210.
51. Gössling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:278751. https://doi.org/10.3389/fimmu.2017.00773.
52. Kraft MT, Mehyar LS, Prince BT, Reshmi SC, Abraham RS, Abu-Arja R. Immune Reconstitution after Hematopoietic Stem Cell Transplantation in Immunodeficiency–Centromeric Instability–Facial Anomalies Syndrome Type 1. J Clin Immunol. 2021;41(5):1089. https://doi.org/10.1007/s10875-021-00984-x.
53. Sykora KW, Beier R, Schulz A, Cesaro S, Greil J, Gozdzik J, et al. Treosulfan vs busulfan conditioning for allogeneic bmt in children with nonmalignant disease: a randomized phase 2 trial. Bone Marrow Transplant. 2023;59(1):107–16. https://doi.org/10.1038/s41409-023-02135-9.
54. Marsh RA, Vaughn G, Kim MO, Li D, Jodele S, Joshi S, et al. Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood. 2010;116(26):5824–31. https://doi.org/10.1182/blood-2010-04-282392.
55. von Hardenberg S, Klefenz I, Steinemann D, Di Donato N, Baumann U, Auber B, et al. Current genetic diagnostics in inborn errors of immunity. Front Pediatr. 2024;12:1279112. https://doi.org/10.3389/fped.2024.1279112.
56. Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, et al. Screening Newborns for Low T Cell Receptor Excision Circles (TRECs) Fails to Detect Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome. J Allergy Clin Immunol Pract. 2023;11(9):2872–83. https://doi.org/10.1016/j.jaip.2023.06.006.
57. Krishnan VP, Morone B, Toubiana S, Krzak M, Fioriniello S, Ragione F Della, et al. The aberrant epigenome of DNMT3B-mutated ICF1 patient iPSCs is amenable to correction, with the exception of a subset of regions with H3K4me3- and/or CTCF-based epigenetic memory. Genome Res. 2023;33(2):169–83. https://doi.org/10.1101/gr.276986.122.
58. Lee A V., Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther. 2024;258:108640. https://doi.org/10.1016/j.pharmthera.2024.108640.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wojciech Homa, Joanna Wanat, Izabela Dzikowska, Agata Siejka, Daria Stefaniak, Aleksandra Warunek, Gabriela Gronowicz, Michał Chról, Weronika Zielińska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 52
Number of citations: 0