Advancements in the Treatment of Mucopolysaccharidoses: From Established Therapies to Gene Therapy
DOI:
https://doi.org/10.12775/JEHS.2025.78.57726Keywords
Gene therapy, Mucopolysaccharidoses, Hurler syndrome, Hematopoietic stem cell transplantation, Enzyme replacement therapy, Inborn errors of metabolismAbstract
Introduction and purpose
Mucopolysaccharidoses (MPS), a subset of inborn errors of metabolism (IEM), are genetic disorders requiring pediatricians to recognize non-specific symptoms and carefully monitor newborns. Early diagnosis is essential for optimizing therapeutic outcomes. In recent years, significant progress has been made not only in the diagnostic process but also in the development of therapies. Established treatments, such as hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), have been improved, while advancements in gene therapy have opened new possibilities.
State of knowledge
Numerous studies and clinical trials suggest that novel therapies could be game-changers in managing MPS. Among the promising new treatments are: blood-brain barrier (BBB)-penetrable enzyme replacement therapy (ERT), substrate reduction therapy, nonsense suppression therapy, and mRNA engineering. However, the most advanced treatments, that are currently under investigation are in-vivo and ex-vivo gene therapy.
Conclusions
This article aims to review treatment options for MPS I (Hurler syndrome), highlighting the evolution from established therapies to innovative approaches.
References
[1] Ferreira CR, van Karnebeek CDM. Inborn errors of metabolism. Handb Clin Neurol 2019;162:449–81. https://doi.org/10.1016/B978-0-444-64029-1.00022-9.
[2] Inborn Errors of Metabolism—Approach to Diagnosis and Management in Neonates. Indian J Pediatr. 2021;88(7):679-89. https://doi.org/10.1007/s12098-021-03759-9
[3] Schrier Vergano SA. Inborn Errors of Metabolism: Becoming Ready for Rare. Pediatr Rev. 2022;43:371–83. https://doi.org/10.1542/PIR.2022-005088.
[4] Giugliani R, Federhen A, Rojas MVM, Vieira T, Artigalás O, Pinto LL, et al. Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment. Genet Mol Biol. 2010;33:589. https://doi.org/10.1590/S1415-47572010005000093.
[5] Zhou J, Lin J, Leung WT, Wang L. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis Res. 2020;9:2020.01011. https://doi.org/10.5582/IRDR.2020.01011.
[6] Nagpal R, Goyal RB, Priyadarshini K, Kashyap S, Sharma M, Sinha R, et al. Mucopolysaccharidosis: A broad review. Indian J Ophthalmol. 2022;70:2249. https://doi.org/10.4103/IJO.IJO_425_22.
[7] Vernon HJ, Przylepa KA. HURLER SYNDROME – OMIM. https://www.omim.org/entry/607014?search=Hurler&highlight=hurler (access: 28.12.2024).
[8] Beesley CE, Meaney CA, Greenland G, Adams V, Vellodi A, Young EP, et al. Mutational analysis of 85 mucopolysaccharidosis type I families: Frequency of known mutations, identification of 17 novel mutations and in vitro expression of missense mutations. Hum Genet. 2001;109:503–11. https://doi.org/10.1007/S004390100606/METRICS.
[9] Suarez-Guerrero JL, Gómez Higuera PJI, Arias Flórez JS, Contreras-García GA. Mucopolysaccharidosis: clinical features, diagnosis and management. Rev Chil Pediatr. 2016;87:295–304. https://doi.org/10.1016/j.rchipe.2015.10.004.
[10] Michaud M, Belmatoug N, Catros F, Ancellin S, Touati G, Levade T, et al. Mucopolysaccharidosis: A review. Rev Med Interne. 2020;41:180–8. https://doi.org/10.1016/J.REVMED.2019.11.010.
[11] Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet. 2019;64(2):127-137. https://doi.org/10.1038/S10038-018-0534-8.
[12] Lalwani K, Conner E. Hurler Syndrome. Congenital Cardiac Anesthesia: A Case-Based Approach. Cambridge University Press. 2021:367–73. https://doi.org/10.1017/9781108657341.049.
[13] Rao KS, Adhikari S, Singh S, Poudel S, Basnet S, Bishwakarma G. Hurler Syndrome. J. Nepal Paedtr. 2017;36:295–7. https://doi.org/10.3126/jnps.v36i3.16349.
[14] Hampe CS, Wesley J, Lund TC, Orchard PJ, Polgreen LE, Eisengart JB, et al. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules 2021;11:1–25. https://doi.org/10.3390/BIOM11020189.
[15] Aldenhoven M, Jones SA, Bonney D, Borrill RE, Coussons M, Mercer J, et al. Hematopoietic Cell Transplantation for Mucopolysaccharidosis Patients Is Safe and Effective: Results after Implementation of International Guidelines. Biol Blood Marrow Transplant. 2015;21:1106–9. https://doi.org/10.1016/j.bbmt.2015.02.011.
[16] Aldenhoven M, Wynn RF, Orchard PJ, O’Meara A, Veys P, Fischer A, et al. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study. Blood. 2015;125:2164–72. https://doi.org/10.1182/BLOOD-2014-11-608075.
[17] Giugliani R, Federhen A, Rojas MVM, Vieira T, Artigalás O, Pinto LL, et al. Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment. Genet Mol Biol. 2010;33:589. https://doi.org/10.1590/S1415-47572010005000093.
[18] Boelens JJ, Wynn RF, O’Meara A, Veys P, Bertrand Y, Souillet G, et al. Outcomes of hematopoietic stem cell transplantation for Hurler’s syndrome in Europe: a risk factor analysis for graft failure. Bone Marrow Transplant. 2007;40:225–33. https://doi.org/10.1038/sj.bmt.1705718.
[19] Kuiper GA, van Hasselt PM, Boelens JJ, Wijburg FA, Langereis EJ. Incomplete biomarker response in mucopolysaccharidosis type I after successful hematopoietic cell transplantation. Mol Genet Metab. 2017;122:86–91. https://doi.org/10.1016/J.YMGME.2017.05.009.
[20] Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis. 2021;44:1289–310. https://doi.org/10.1002/JIMD.12431.
[21] Weisstein JS, Delgado E, Steinbach LS, Hart K, Packman S. Musculoskeletal manifestations of Hurler syndrome: long-term follow-up after bone marrow transplantation. J Pediatr Orthop. 2004;24:97–101. https://doi.org/10.1097/00004694-200401000-00019.
[22] Nan H, Park C, Maeng S. Mucopolysaccharidoses I and II: Brief Review of Therapeutic Options and Supportive/Palliative Therapies. Biomed Res Int. 2020;2020:2408402. https://doi.org/10.1155/2020/2408402.
[23] Scarpa M, Almássy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72. https://doi.org/10.1186/1750-1172-6-72.
[24] Clarke LA, Wraith JE, Beck M, Kolodny EH, Pastores GM, Muenzer J, et al. Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I. Pediatrics. 2009;123:229–40. https://doi.org/10.1542/PEDS.2007-3847.
[25] Muenzer J. Early initiation of enzyme replacement therapy for the mucopolysaccharidoses. Mol Genet Metab. 2014;111:63–72. https://doi.org/10.1016/J.YMGME.2013.11.015.
[26] Eisengart JB, Pierpont EI, Kaizer AM, Rudser KD, King KE, Pasquali M, et al. Intrathecal enzyme replacement for Hurler syndrome: biomarker association with neurocognitive outcomes. Genet Med. 2019;21:2552–60. https://doi.org/10.1038/S41436-019-0522-1.
[27] Sohn YB, Ko AR, Seong M ran, Lee S, Kim MR, Cho SY, et al. The efficacy of intracerebroventricular idursulfase-beta enzyme replacement therapy in mucopolysaccharidosis II murine model: heparan sulfate in cerebrospinal fluid as a clinical biomarker of neuropathology. J Inherit Metab Dis. 2018;41:1235–46. https://doi.org/10.1007/S10545-018-0221-0.
[28] Eisengart JB, Pierpont EI, Kaizer AM, Rudser KD, King KE, Pasquali M, et al. Intrathecal enzyme replacement for Hurler syndrome: biomarker association with neurocognitive outcomes. Genet Med. 2019;21:2552–60. https://doi.org/10.1038/S41436-019-0522-1.
[29] Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am J Hematol. 2005;80:223–9. https://doi.org/10.1002/AJH.20504.
[30] Roberts ALK, Thomas BJ, Wilkinson AS, Fletcher JM, Byers S. Inhibition of Glycosaminoglycan Synthesis Using Rhodamine B in a Mouse Model of Mucopolysaccharidosis Type IIIA. Pediatric Research. 2006;60:309–14. https://doi.org/10.1203/01.pdr.0000233037.00707.da.
[31] Piotrowska E, Jakóbkiewicz-Banecka J, Barańska S, Tylki-Szymańska A, Czartoryska B, Wegrzyn A, et al. Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet. 2006;14:846–52. https://doi.org/10.1038/SJ.EJHG.5201623.
[32] Entchev E, Jantzen I, Masson P, Bocart S, Bournique B, Luccarini JM, et al. Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI—Evidence from in vitro and in vivo models. PLoS One. 2020;15:e0233032. https://doi.org/10.1371/JOURNAL.PONE.0233032.
[33] Rintz E, Pierzynowska K, Podlacha M, Węgrzyn G. Has resveratrol a potential for mucopolysaccharidosis treatment? Eur J Pharmacol. 2020;888:173534. https://doi.org/10.1016/J.EJPHAR.2020.173534.
[34] Fu H, McCarty DM. Crossing the blood-brain-barrier with viral vectors. Curr Opin Virol. 2016;21:87–92. https://doi.org/10.1016/J.COVIRO.2016.08.006.
[35] Christensen CL, Ashmead RE, Choy FYM. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases 2019;7:47. https://doi.org/10.3390/DISEASES7030047.
[36] Gomez-Ospina N, Scharenberg SG, Mostrel N, Bak RO, Mantri S, Quadros RM, et al. Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat Commun. 2019;10:1–14. https://doi.org/10.1038/s41467-019-11962-8.
[37] Visigalli I, Delai S, Politi LS, Di Domenico C, Cerri F, Mrak E, et al. Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood. 2010;116:5130. https://doi.org/10.1182/BLOOD-2010-04-278234.
[38] Gentner B, Tucci F, Galimberti S, Fumagalli F, De Pellegrin M, Silvani P, et al. Hematopoietic Stem- and Progenitor-Cell Gene Therapy for Hurler Syndrome. N Engl J Med.2021;385:1929–40. https://doi.org/10.1056/NEJMoa2106596.
[39] Aronovich EL, McIvor RS, Hackett PB. The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet. 2011;20:R14-R20. https://doi.org/10.1093/HMG/DDR140.
[40] Aronovich EL, Bell JB, Khan SA, Belur LR, Gunther R, Koniar B, et al. Systemic Correction of Storage Disease in MPS I NOD/SCID Mice Using the Sleeping Beauty Transposon System. Mol Ther. 2009;17:1136. https://doi.org/10.1038/MT.2009.87.
[41] Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J, Schoeb TR, et al. Long-Term Nonsense Suppression Therapy Moderates MPS I-H Disease Progression. Mol Genet Metab. 2013;111:374. https://doi.org/10.1016/J.YMGME.2013.12.007.
[42] Quoos Mayer F, Alfonso Artigalas O, Lizzi Lagranha V, Baldo G, Vanessa Schwartz I, Matte U, et al. Chloramphenicol enhances IDUA activity on fibroblasts from mucopolysaccharidosis I patients. Curr Pharm Biotechnol. 2013;14:194–8. https://doi.org/10.2174/1389201011314020009.
[43] Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, et al. Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem. 2009;52:2836–45. https://doi.org/10.1021/JM801640K.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Joanna Wanat, Wojciech Homa, Aleksandra Warunek, Gabriela Gronowicz, Izabela Dzikowska , Agata Siejka , Daria Stefaniak, Weronika Zielińska , Michał Chról

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 123
Number of citations: 0