Therapeutic Potential of 1,8-Cineole in Respiratory Diseases with a Focus on Asthma, Sinusitis, and Upper Respiratory Tract Infections: A Comprehensive Review
DOI:
https://doi.org/10.12775/JEHS.2025.78.57692Keywords
1,8-Cineole, respiratory diseases, chronic sinusitis, asthma, URTIs, anti-inflammatory, mucolytic therapy, immunomodulationAbstract
IntroductionRespiratory diseases, such as chronic sinusitis, asthma, and URTIs, are among the leading global health burdens, affecting tens of millions of people every year. These conditions often involve chronic inflammation, impaired mucociliary function, and obstruction of the airways, leading to deteriorating respiratory health. The natural compound 1,8-cineole is a monoterpene present in eucalyptus oil and has received attention in recent times as an alternative therapeutic agent for respiratory diseases. Its anti-inflammatory, antioxidant, mucolytic, bronchodilatory, antiviral, and antimicrobial effects may be beneficial in the management of these diseases. Clinical evidence has shown that 1,8-cineole provides symptom relief, improves lung function, and enhances quality of life, particularly in patients with COPD, asthma, and chronic sinusitis. Besides, due to its good safety profile and minimal side effects, it represents a very attractive adjunctive treatment option. Methods
This review synthesizes both classic and contemporary research findings on the mechanisms of action, clinical efficacy, and safety profile of 1,8-cineole. A comprehensive literature search was conducted across peer-reviewed journals to provide a balanced and evidence-based overview. Results
Evidence indicates that 1,8-cineole effectively modulates inflammatory pathways by inhibiting cytokine release and suppressing arachidonic acid metabolism. Clinical trials demonstrate its efficacy in reducing symptoms of chronic sinusitis, improving pulmonary function in asthma, and alleviating symptoms in URTIs. Safety data support its tolerability, with mild gastrointestinal discomfort reported in rare cases. Conclusion
1,8-Cineole represents a promising alternative or adjunctive treatment for inflammatory respiratory conditions. Future research should focus on optimizing delivery methods and investigating its synergistic potential with existing therapies.
References
1. Zhao, C., Sun, J., Fang, C. & Tang, F. 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation 37, 566–572. https://doi.org/10.1007/s10753-013-9770-4
2. Dhakad AK, Pandey VV, Beg S, Rawat JM, Singh A. Biological, medicinal and toxicological significance of eucalyptus leaf essential oil: a review. J Sci Food Agric. 2018;98:833–48. https://doi.org/10.1002/jsfa.8600
3. Nakamura T, Yoshida N, Yamanoi Y, Honryo A, Tomita H, Kuwabara H, Kojima Y. Eucalyptus oil reduces allergic reactions and suppresses mast cell degranulation by downregulating IgE-FcεRI signalling. Sci Rep. 2020 Dec 1;10(1):20940. PMID: 33262354; PMCID: PMC7708995. https://doi.org/10.1038/s41598-020-77039-5
4. Juergens UR, Stöber M, Schmidt-Schilling L, Kleuver T, Vetter H. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res. 1998 Sep 17;3(9):407-12. PMID: 9737886.
5. Juergens UR, Stöber M, Vetter H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur J Med Res. 1998 Nov 17;3(11):508-10. PMID: 9810029.
6. Juergens LJ, Worth H, Juergens UR. New Perspectives for Mucolytic, Anti-inflammatory and Adjunctive Therapy with 1,8-Cineole in COPD and Asthma: Review on the New Therapeutic Approach. Adv Ther. 2020 May;37(5):1737-1753. Epub 2020 Mar 21. PMID: 32200535; PMCID: PMC7467491. https://doi.org/10.1007/s12325-020-01279-0
7. Sudhoff H, Klenke C, Greiner JF, et al. 1,8-Cineole reduces mucus-production in a novel human ex vivo model of late rhinosinusitis. PLoS One. 2015;10(7):e0133040. https://doi.org/10.1371/journal.pone.0133040
8. Hyun-Seung Lee,a Da-Eun Park,b Woo-Jung Song,b Heung-Woo Park,b Hye-Ryun Kang,b Sang-Heon Cho,b and Seong-Wook Sohn. Effect of 1.8-Cineole in Dermatophagoides pteronyssinus-Stimulated Bronchial Epithelial Cells and Mouse Model of Asthma; https://doi.org/10.1248/bpb.b15-00876
9.Müller J, Greiner JF, Zeuner M, Brotzmann V, Schäfermann J, Wieters F, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C. 1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clin Sci (Lond). 2016 Aug 1;130(15):1339-52. Epub 2016 Apr 25. PMID: 27129189. https://doi.org/10.1042/CS20160218
10. Müller, J., Greiner, J. F. W., Zeuner, M., Brotzmann, V., Schäfermann, J., Wieters, F., Widera, D. ORCID: https://orcid.org/0000-0003-1686-130X, Sudhoff, H., Kaltschmidt, B. and Kaltschmidt, C. (2016) 1,8-cineol potentiates IRF3-mediated antiviral response in human stem cells and an ex vivo model of rhinosinusitis. Clinical Science. ISSN 0143-5221 doi: https://doi.org/10.1042/CS20160218
11. Gwaltney JM Jr. Rhinovirus infection of the normal human airway. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 2):S36-9. doi: 10.1164/ajrccm/152.4_Pt_2.S36. PMID: 7551410. https://doi.org/10.1164/ajrccm/152.4_Pt_2.S36
12. Greiner JF, Müller J, Zeuner MT, Hauser S, Seidel T, Klenke C, Grunwald LM, Schomann T, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C. 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. Biochim Biophys Acta. 2013 Dec;1833(12):2866-2878. Epub 2013 Jul 18. PMID: 23872422. https://doi.org/10.1016/j.bbamcr.2013.07.001
13. Astani A, Reichling J, Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother Res. 2010 May;24(5):673-9. PMID: 19653195; PMCID: PMC7167768. https://doi.org/10.1002/ptr.2955
14. Fyfe L, Armstrong F, Stewart J. Inhibition of Listeria monocytogenes and Salmonella enteriditis by combinations of plant oils and derivatives of benzoic acid: The development of synergistic antimicrobial combinations. Int J Antimicrob Agents. 1997;9:195–9. https://doi.org/10.1016/s0924-8579(97)00051-4
15. Filoche SK, Soma K, Sissons CH. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol Immunol. 2005;20:221–5. https://doi.org/10.1111/j.1399-302X.2005.00216.x
16. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12:564–82. doi: 10.1128/cmr.12.4.564.
17. Merih Şimşek, Reşat Duman; Investigation of Effect of 1,8-cineole on Antimicrobial Activity of Chlorhexidine Gluconate; 2017 Jul-Sep;9(3):234–237. https://doi.org/10.4103/0974-8490.210329
18. Addo K.A., Li L., Li H., Yu Y., Xiao X. Osmotic stress relief antibiotic tolerance of 1,8-cineole in biofilm persister cells of Escherichia coli O157:H7 and expression of toxin-antitoxin system genes. Microb. Pathog. 2022;173:105883. https://doi.org/10.1016/j.micpath.2022.105883
19. Landeo-Villanueva G.E., Salazar-Salvatierra M.E., Ruiz-Quiroz J.R., Zuta-Arriola N., Jarama-Soto B., Herrera-Calderon O., Pari-Olarte J.B., Loyola-Gonzales E. Inhibitory Activity of Essential Oils of Mentha spicata and Eucalyptus globulus on Biofilms of Streptococcus mutans in an In Vitro Model. Antibiotics. 2023;12:369. https://doi.org/10.3390/antibiotics12020369
20. Hall, C. W., and Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 41, 276–301. https://doi.org/10.1093/femsre/fux010
21. Worth H., Schacher C., Dethlefsen U. Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: A placebo-controlled double-blind trial. Respir. Res. 2009;10:69. https://doi.org/10.1186/1465-9921-10-69
22. Api A.M., Belsito D., Botelho D., Bruze M., Burton G.A., Cancellieri M.A., Chon H., Dagli M.L., Date M., Dekant W., et al. RIFM fragrance ingredient safety assessment, gamma-hexalactone, CAS Registry Number 695-06-7. Food Chem. Toxicol. 2022;167:113278. https://doi.org/10.1016/j.fct.2022.113278
23. Cai Z.M., Peng J.Q., Chen Y., Tao L., Zhang Y.Y., Fu L.Y., Long Q.D., Shen X.C. 1,8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021;23:938–954. https://doi.org/10.1080/10286020.2020.1839432
24. Kehrl W, Sonnemann U, Dethlefsen U. Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial. Laryngoscope. 2004 Apr;114(4):738-42. PMID: 15064633. https://doi.org/10.1097/00005537-200404000-00027
25. Fischer J, Dethlefsen U. Efficacy of cineole in patients suffering from acute bronchitis: a placebo-controlled double-blind trial. Cough. 2013 Nov 21;9(1):25. PMID: 24261680; PMCID: PMC3842692, https://doi.org/10.1186/1745-9974-9-25
26. Sharma AD, Eucalyptol (1,8 cineole) from Eucalyptus Essential Oil a Potential Inhibitor of COVID 19 Corona Virus Infection by Molecular Docking Studies, https://doi.org/10.20944/preprints202003.0455.v1
27. Hastan, D., Fokkens, W. J., Bachert, C., Newson, R. B., Bislimovska, J., Bockelbrink, A., et al. (2011). Chronic rhinosinusitis in Europe–an underestimated disease. A GA(2)LEN study. Allergy 66, 1216–1223. https://doi.org/10.1111/j.1398-9995.2011.02646.x
28. Kennedy, D. W. (2004). Pathogenesis of chronic rhinosinusitis. Ann. Otol. Rhinol. Laryngol. 113, 6–9. https://doi.org/10.1177/00034894041130s503
29. Joe, S. A., Thambi, R., and Huang, J. (2008). A systematic review of the use of intranasal steroids in the treatment of chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 139, 340–347. https://doi.org/10.1016/j.otohns.2008.05.628
30 Bachmann, G., Hommel, G., and Michel, O. (2000). Effect of irrigation of the nose with isotonic salt solution on adult patients with chronic paranasal sinus disease. Eur. Arch. Otorhinolaryngol. 257, 537–541. https://doi.org/10.1007/s004050000271
31. Suh, J. D., and Kennedy, D. W. (2011). Treatment options for chronic rhinosinusitis. Proc. Am. Thorac. Soc. 8, 132–140. https://doi.org/10.1513/pats.201003-028RN
32. Feazel, L. M., Robertson, C. E., Ramakrishnan, V. R., and Frank, D. N. (2012). Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope 122, 467–472. https://doi.org/10.1002/lary.22398
33. Singh, P., Mehta, R., Agarwal, S., and Mishra, P. (2015). Bacterial biofilm on the sinus mucosa of healthy subjects and patients with chronic rhinosinusitis (with or without nasal polyposis). J. Laryngol. Otol. 129, 46–49. https://doi.org/10.1017/S002221511400303X
34. M. Schürmann ,F. Oppel1 ,M. Gottschalk ,B. Büker ,C. A. Jantos ,C. Knabbe ,A. Hütten ,B. Kaltschmidt ,C. Kaltschmidt and H. Sudhoff ;The Therapeutic Effect of 1,8-Cineol on Pathogenic Bacteria Species Present in Chronic Rhinosinusitis; 2019, https://doi.org/10.3389/fmicb.2019.02325
35. Swamy, M. K., Akhtar, M. S., and Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid. Based Complement. Alternat. Med. 2016:3012462. https://doi.org/10.1155/2016/3012462
36. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol. 2008 Feb;46(2):446-75. Epub 2007 Sep 29. PMID: 17996351. https://doi.org/10.1016/j.fct.2007.09.106
37. Kavanaugh, N. L., and Ribbeck, K. (2012). Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl. Environ. Microbiol. 78, 4057–4061. https://doi.org/10.1128/AEM.07499-11
38. Stevens, W. W., Schleimer, R. P., and Kern, R. C. (2016). Chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. Pract. 4, 565–572. https://doi.org/10.1016/j.jaip.2016.04.012
39. Junqin Bai, Julia H. Huang, Caroline P.E. Price, Atsushi Kato, Robert P. Schleimer, Bruce K. Tan; Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps; https://doi.org/10.1016/j.jaci.2022.02.029
40. Sahin, G., et al., Nitric oxide: a promising methodological approach in airway diseases. Int 423 Arch Allergy Immunol, 2011. 156(4): p. 352-61; https://doi.org/10.1159/000324678.
41. Gilain L, Bedu M, Jouaville L, Guichard C, Advenier D, Mom T, Laurent S, Caillaud D. Analyse des concentrations nasales et dans l'air expiré du monoxyde d'azote (NO) dans la polypose naso-sinusienne [Analysis of nasal and exhaled nitric oxide concentration in nasal polyposis]. Ann Otolaryngol Chir Cervicofac. 2002 Sep;119(4):234-42. French. PMID: 12410120
42. Serrano, C., A. Valero, and C. Picado, [Nasal nitric oxide]. Arch Bronconeumol, 2004. 40(5): p. 427 222-30. https://doi.org/10.1016/s1579-2129(06)70088-x
43. M. Koennecke, F. Benecke, A. Masche, R. Linke, K.-L. Bruchhage, R. Pries, L. Klimek, B. Wollenberg; https://doi.org/10.1016/j.niox.2018.06.002
44. Juergens UR, Dethlefsen U, Steinkamp A, Gillissen A, Repges R, Vetter H: Anti-inflammatory activity of 1.8-Cineole (Eucalyptol) in bronchial asthma: a double-blind placebo controlled trial. Respiratory Medicine 2003, 97:250-256.; https://doi.org/10.1053/rmed.2003.1432
45. Zheng JP, Kang J, Huang SG, Chen P, Yao WZ, Yang L, Bai CX, Wang CZ, Wang C, Chen BY, Shi Y, Liu CT, Chen P, Li Q, Wang ZS, Huang YJ, Luo ZY, Chen FP, Yuan JZ, Yuan BT, Qian HP, Zhi RC, Zhong NS: Effect of Carbocysteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet 2008, 371:2013-2018; https://doi.org/10.1016/S0140-6736(08)60869-7
46. De Lima Gondim F, dos Santos GR, do Nascimento IFMG, Serra DS, Cavalcante FSA. Beneficial effects of eucalyptol in the pathophysiological changes of the respiratory system: a proposal for alternative pharmacological therapy for individuals with COPD. Eur J Med Plants. 2018;25(1):1–10; https://doi.org/10.9734/EJMP/2018/43561
47. Worth H, Dethlefsen U. Patients with asthma benefit from concomitant therapy with cineole: a placebo-controlled, double-blind trial. J Asthma. 2012;49(8):849–53. https://doi.org/10.3109/02770903.2012.717657
48. Bastos VP, Brito TS, Lima FJ. Inhibitory effect of 1,8 cineole on guinea-pig airway challenged with ovalbumin involves a preferential action on electromechanical coupling. Clin Exp Pharmacol Physiol. 2009;36(11):1120–6. https://doi.org/10.1111/j.1440-1681.2009.05189.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kamil Hermanowicz, Daria Oleksy, Katarzyna Doman, Julia Nowak, Michał Jakub Cioch, Agnieszka Najdek, Dawid Komada, Urszula Kaczmarska, Aleksandra Woźniak, Marcin Mycyk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 69
Number of citations: 0