GLP-1 and SGLT2 Therapies in Type 2 Diabetes Mellitus. Cutting-Edge Approaches to Advancing Diabetes Care
DOI:
https://doi.org/10.12775/JEHS.2025.78.57478Keywords
type 2 diabetes, flozyns, dm 2Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease characterized by insulin resistance, beta-cell dysfunction, and chronic hyperglycemia. Despite the availability of conventional therapies, significant unmet needs persist in achieving optimal glycemic control and reducing long-term complications. GLP-1 receptor agonists (GLP-1 RAs) and SGLT2 inhibitors represent two novel classes of antidiabetic agents that have transformed the therapeutic landscape. This paper explores their mechanisms of action, clinical benefits, and potential synergistic effects, emphasizing their impact on cardiovascular and renal outcomes. Challenges and future directions for these agents in personalized diabetes care are also discussed.
References
1. Diabetes Facts and Figures | International Diabetes Federation , from https://idf.org/about-diabetes/diabetes-facts-figures/
2. Cole, J. B., & Florez, J. C. (2020). Genetics of diabetes and diabetes complications. Nature Reviews. Nephrology, 16(7), 377. https://doi.org/10.1038/S41581-020-0278-5
3. Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of Diabetes and Diabetes-Related Complications. Physical Therapy, 88(11), 1254. https://doi.org/10.2522/PTJ.20080020
4. Demir, S., Nawroth, P. P., Herzig, S., & Ekim Üstünel, B. (2021). Emerging Targets in Type 2 Diabetes and Diabetic Complications. Advanced Science, 8(18), 2100275. https://doi.org/10.1002/ADVS.202100275
5. Ruze, R., Liu, T., Zou, X., Song, J., Chen, Y., Xu, R., Yin, X., & Xu, Q. (2023). Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Frontiers in Endocrinology, 14, 1161521. https://doi.org/10.3389/FENDO.2023.1161521
6. Pfeiffer, A. F. H., & Klein, H. H. (2014). The Treatment of Type 2 Diabetes. Deutsches Ärzteblatt International, 111(5), 69. https://doi.org/10.3238/ARZTEBL.2014.0069
7. Wright, A. K., Carr, M. J., Kontopantelis, E., Leelarathna, L., Thabit, H., Emsley, R., Buchan, I., Mamas, M. A., van Staa, T. P., Sattar, N., Ashcroft, D. M., & Rutter, M. K. (2022). Primary Prevention of Cardiovascular and Heart Failure Events With SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Their Combination in Type 2 Diabetes. Diabetes Care, 45(4), 909–918. https://doi.org/10.2337/DC21-1113
8. Kautzky-Willer, A., Harreiter, J., & Pacini, G. (2016). Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocrine Reviews, 37(3), 278. https://doi.org/10.1210/ER.2015-1137
9. Lee, S. H., Park, S. Y., & Choi, C. S. (2021). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46(1), 15. https://doi.org/10.4093/DMJ.2021.0280
10. Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98(4), 2133. https://doi.org/10.1152/PHYSREV.00063.2017
11. Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of Oxidative Stress in Metabolic Syndrome. International Journal of Molecular Sciences, 24(9), 7898. https://doi.org/10.3390/IJMS24097898
12. Drucker, D. J. (2021). GLP-1 physiology informs the pharmacotherapy of obesity. Molecular Metabolism, 57, 101351. https://doi.org/10.1016/J.MOLMET.2021.101351
13. Drucker, D. J. (2018). Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metabolism, 27(4), 740–756. https://doi.org/10.1016/J.CMET.2018.03.001
14. Nauck, M. A., Quast, D. R., Wefers, J., & Meier, J. J. (2020). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46, 101102. https://doi.org/10.1016/J.MOLMET.2020.101102
15. Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiological Reviews, 87(4), 1409–1439. https://doi.org/10.1152/PHYSREV.00034.2006
16. Gronda, E., Jessup, M., Iacoviello, M., Palazzuoli, A., & Napoli, C. (2020). Glucose Metabolism in the Kidney: Neurohormonal Activation and Heart Failure Development. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 9(23), e018889. https://doi.org/10.1161/JAHA.120.018889
17. Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., Xu, S., Xu, Y., Hwa, J., Li, J., Shang, H., & Xiang, Y. (2021). Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein & Cell, 13(5), 336. https://doi.org/10.1007/S13238-020-00809-4
18. Ellison, D. H. (2021). SGLT2 inhibitors, hemodynamics, and kidney protection. American Journal of Physiology - Renal Physiology, 321(1), F47. https://doi.org/10.1152/AJPRENAL.00092.2021
19. Taylor, S. I., Yazdi, Z. S., & Beitelshees, A. L. (2021). Pharmacological treatment of hyperglycemia in type 2 diabetes. The Journal of Clinical Investigation, 131(2), e142243. https://doi.org/10.1172/JCI142243
20. Kahn, S. E., Cooper, M. E., & del Prato, S. (2013). PATHOPHYSIOLOGY AND TREATMENT OF TYPE 2 DIABETES: PERSPECTIVES ON THE PAST, PRESENT AND FUTURE. Lancet, 383(9922), 1068. https://doi.org/10.1016/S0140-6736(13)62154-6
21. Lau, J., Bloch, P., Schäffer, L., Pettersson, I., Spetzler, J., Kofoed, J., Madsen, K., Knudsen, L. B., McGuire, J., Steensgaard, D. B., Strauss, H. M., Gram, D. X., Knudsen, S. M., Nielsen, F. S., Thygesen, P., Reedtz-Runge, S., & Kruse, T. (2015). Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. Journal of Medicinal Chemistry, 58(18), 7370–7380. https://doi.org/10.1021/ACS.JMEDCHEM.5B00726/SUPPL_FILE/JM5B00726_SI_001.PDF
22. Kawai, T., Sun, B., Yoshino, H., Feng, D., Suzuki, Y., Fukazawa, M., Nagao, S., Wainscott, D. B., Showalter, A. D., Droz, B. A., Kobilka, T. S., Coghlan, M. P., Willard, F. S., Kawabe, Y., Kobilka, B. K., & Sloop, K. W. (2020). Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29959–29967. https://doi.org/10.1073/PNAS.2014879117/-/DCSUPPLEMENTAL
23. Danowitz, M., & de Leon, D. D. (2022). The Role of GLP-1 Signaling in Hypoglycemia due to Hyperinsulinism. Frontiers in Endocrinology, 13, 863184. https://doi.org/10.3389/FENDO.2022.863184
24. Yao, H., Zhang, A., Li, D., Wu, Y., Wang, C. Z., Wan, J. Y., & Yuan, C. S. (2024). Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. The BMJ, 384, e076410. https://doi.org/10.1136/BMJ-2023-076410
25. de Oca, alejandra P. Z. M. T. S., PelliTero, S., & PUig-DoMingo, M. (2021). obesity and glP-1. Minerva Endocrinology, 46(2), 168–176. https://doi.org/10.23736/S2724-6507.20.03369-6
26. Kadouh, H., Chedid, V., Halawi, H., Burton, D. D., Clark, M. M., Khemani, D., Vella, A., Acosta, A., & Camilleri, M. (2019). GLP-1 Analog Modulates Appetite, Taste Preference, Gut Hormones, and Regional Body Fat Stores in Adults with Obesity. The Journal of Clinical Endocrinology and Metabolism, 105(5), 1552. https://doi.org/10.1210/CLINEM/DGZ140
27. Wang, J. Y., Wang, Q. W., Yang, X. Y., Yang, W., Li, D. R., Jin, J. Y., Zhang, H. C., & Zhang, X. F. (2023). GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach. Frontiers in Endocrinology, 14, 1085799. https://doi.org/10.3389/FENDO.2023.1085799
28. Marx, N., Husain, M., Lehrke, M., Verma, infodh, & Sattar, N. (2022). GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients with Type 2 Diabetes. Circulation, 146(24), 1882–1894. https://doi.org/10.1161/CIRCULATIONAHA.122.059595/ASSET/AD09F9FB-0BF4-4C02-8C15-FE4DF1F5A441/ASSETS/GRAPHIC/CIRCULATIONAHA.122.059595.FIG01.JPG
29. Vallon, V., & Verma, S. (2020). Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annual Review of Physiology, 83, 503. https://doi.org/10.1146/ANNUREV-PHYSIOL-031620-095920
30. Bailey, C. J., Day, C., & Bellary, S. (2022). Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Current Diabetes Reports, 22(1), 39. https://doi.org/10.1007/S11892-021-01442-Z
31. Chen, S., Coronel, R., Hollmann, M. W., Weber, N. C., & Zuurbier, C. J. (2022). Direct cardiac effects of SGLT2 inhibitors. Cardiovascular Diabetology, 21(1), 45. https://doi.org/10.1186/S12933-022-01480-1
32. Beal, B., Schutte, A. E., & Neuen, B. L. (2023). Blood Pressure Effects of SGLT2 Inhibitors: Mechanisms and Clinical Evidence in Different Populations. Current Hypertension Reports, 25(12), 429–435. https://doi.org/10.1007/S11906-023-01281-1/METRICS
33. Brown, E., Wilding, J. P. H., Barber, T. M., Alam, U., & Cuthbertson, D. J. (2019). Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obesity Reviews, 20(6), 816–828. https://doi.org/10.1111/OBR.12841
34. Steiner, S. (2016). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. Zeitschrift Fur Gefassmedizin, 13(1), 17–18. https://doi.org/10.1056/NEJMOA1504720/SUPPL_FILE/NEJMOA1504720_DISCLOSURES.PDF
35. McMurray, J. J. V., Solomon, S. D., Inzucchi, S. E., Køber, L., Kosiborod, M. N., Martinez, F. A., Ponikowski, P., Sabatine, M. S., Anand, I. S., Bělohlávek, J., Böhm, M., Chiang, C.-E., Chopra, V. K., Boer, R. A. de, Desai, A. S., Diez, M., Drozdz, J., Dukát, A., Ge, J., … Langkilde, A.-M. (2019). Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381(21), 1995–2008. https://doi.org/10.1056/NEJMOA1911303
36. Toyama, T., Neuen, B. L., Jun, M., Ohkuma, T., Neal, B., Jardine, M. J., Heerspink, H. L., Wong, M. G., Ninomiya, T., Wada, T., & Perkovic, V. (2019). Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes, Obesity and Metabolism, 21(5), 1237–1250. https://doi.org/10.1111/DOM.13648
37. Perkovic, V., Jardine, M. J., Neal, B., Bompoint, S., Heerspink, H. J. L., Charytan, D. M., Edwards, R., Agarwal, R., Bakris, G., Bull, S., Cannon, C. P., Capuano, G., Chu, P.-L., de Zeeuw, D., Greene, T., Levin, A., Pollock, C., Wheeler, D. C., Yavin, Y., … Mahaffey, K. W. (2019). Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380(24), 2295–2306. https://doi.org/10.1056/NEJMOA1811744/SUPPL_FILE/NEJMOA1811744_DATA-SHARING.PDF
38. Podestà, M. A., Sabiu, G., Galassi, A., Ciceri, P., & Cozzolino, M. (2023). SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines, 11(2), 279. https://doi.org/10.3390/BIOMEDICINES11020279
39. Theodorakopoulou, M. P., & Sarafidis, P. (2023). SGLT2 inhibitors and finerenone in non-diabetic CKD: a step into the (near) future? Clinical Kidney Journal, 17(1), sfad272. https://doi.org/10.1093/CKJ/SFAD272
40. Theofilis, P., Sagris, M., Oikonomou, E., Antonopoulos, A. S., Siasos, G., Tsioufis, K., & Tousoulis, D. (2022). Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes. Diabetes Research and Clinical Practice, 188. https://doi.org/10.1016/J.DIABRES.2022.109927/ASSET/4E388F00-030C-4E59-8E2B-894802B1E2CD/MAIN.ASSETS/GA1.JPG
41. Marso, S. P., Daniels, G. H., Brown-Frandsen, K., Kristensen, P., Mann, J. F. E., Nauck, M. A., Nissen, S. E., Pocock, S., Poulter, N. R., Ravn, L. S., Steinberg, W. M., Stockner, M., Zinman, B., Bergenstal, R. M., & Buse, J. B. (2016). Liraglutide and cardiovascular outcomes in type 2 diabetes. Drug and Therapeutics Bulletin, 54(9), 101. https://doi.org/10.1056/NEJMOA1603827/SUPPL_FILE/NEJMOA1603827_DISCLOSURES.PDF
42. Marso, S. P., Bain, S. C., Consoli, A., Eliaschewitz, F. G., Jódar, E., Leiter, L. A., Lingvay, I., Rosenstock, J., Seufert, J., Warren, M. L., Woo, V., Hansen, O., Holst, A. G., Pettersson, J., & Vilsbøll, T. (2016). Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 375(19), 1834–1844. https://doi.org/10.1056/NEJMOA1607141/SUPPL_FILE/NEJMOA1607141_DISCLOSURES.PDF
43. Kristensen, S. L., Rørth, R., Jhund, P. S., Docherty, K. F., Sattar, N., Preiss, D., Køber, L., Petrie, M. C., & McMurray, J. J. V. (2019). Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet Diabetes and Endocrinology, 7(10), 776–785. https://doi.org/10.1016/S2213-8587(19)30249-9
44. Lytvyn, Y., Bjornstad, P., Udell, J. A., Lovshin, J. A., & Cherney, D. Z. I. (2017). Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications and Summary of Clinical Trials. Circulation, 136(17), 1643. https://doi.org/10.1161/CIRCULATIONAHA.117.030012
45. Goldney, J., Sargeant, J. A., & Davies, M. J. (2023). Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia, 66(10), 1832. https://doi.org/10.1007/S00125-023-05988-3
46. Vallon, V., & Thomson, S. C. (2020). The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews. Nephrology, 16(6), 317. https://doi.org/10.1038/S41581-020-0256-Y
47. Heerspink, H. J. L., Stefánsson, B. v., Correa-Rotter, R., Chertow, G. M., Greene, T., Hou, F.-F., Mann, J. F. E., McMurray, J. J. V., Lindberg, M., Rossing, P., Sjöström, C. D., Toto, R. D., Langkilde, A.-M., & Wheeler, D. C. (2020). Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383(15), 1436–1446. https://doi.org/10.1056/NEJMOA2024816/SUPPL_FILE/NEJMOA2024816_DATA-SHARING.PDF
48. Moore, P. W., Malone, K., VanValkenburg, D., Rando, L. L., Williams, B. C., Matejowsky, H. G., Ahmadzadeh, S., Shekoohi, S., Cornett, E. M., & Kaye, A. D. (2023). GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications. Advances in Therapy, 40(3), 723–742. https://doi.org/10.1007/S12325-022-02394-W/METRICS
49. Rieg, T., & Vallon, V. (2018). Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 61(10), 2079. https://doi.org/10.1007/S00125-018-4654-7
50. Knudsen, L. B., & Lau, J. (2019). The Discovery and Development of Liraglutide and Semaglutide. Frontiers in Endocrinology, 10(APR), 155. https://doi.org/10.3389/FENDO.2019.00155
51. Benham, J. L., Booth, J. E., Sigal, R. J., Daskalopoulou, S. S., Leung, A. A., & Rabi, D. M. (2021). Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. International Journal of Cardiology. Heart & Vasculature, 33, 100725. https://doi.org/10.1016/J.IJCHA.2021.100725
52. Bendotti, G., Montefusco, L., Lunati, M. E., Usuelli, V., Pastore, I., Lazzaroni, E., Assi, E., Seelam, A. J., el Essawy, B., Jang, Y., Loretelli, C., D’Addio, F., Berra, C., ben Nasr, M., Zuccotti, G. V., & Fiorina, P. (2022). The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacological Research, 182, 106320. https://doi.org/10.1016/J.PHRS.2022.106320
53. Heimke, M., Lenz, F., Rickert, U., Lucius, R., & Cossais, F. (2022). Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells, 11(19), 3107. https://doi.org/10.3390/CELLS11193107
54. Wharton, S., Davies, M., Dicker, D., Lingvay, I., Mosenzon, O., Rubino, D. M., & Pedersen, S. D. (2022). Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity: recommendations for clinical practice. Postgraduate Medicine, 134(1), 14–19. https://doi.org/10.1080/00325481.2021.2002616
55. Filippatos, T. D., Panagiotopoulou, T. v., & Elisaf, M. S. (2015). Adverse Effects of GLP-1 Receptor Agonists. The Review of Diabetic Studies : RDS, 11(3), 202. https://doi.org/10.1900/RDS.2014.11.202
56. Kittipibul, V., Cox, Z. L., Chesdachai, S., Fiuzat, M., Lindenfeld, J. A., & Mentz, R. J. (2024). Genitourinary Tract Infections in Patients Taking SGLT2 Inhibitors: JACC Review Topic of the Week. Journal of the American College of Cardiology, 83(16), 1568–1578. https://doi.org/10.1016/J.JACC.2024.01.040
57. Musso, G., Saba, F., Cassader, M., & Gambino, R. (2020). Diabetic ketoacidosis with SGLT2 inhibitors. BMJ, 371, 1–4. https://doi.org/10.1136/BMJ.M4147
58. Tentolouris, A., Vlachakis, P., Tzeravini, E., Eleftheriadou, I., & Tentolouris, N. (2019). SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. International Journal of Environmental Research and Public Health, 16(16), 2965. https://doi.org/10.3390/IJERPH16162965
59. Cusick, M. M., Tisdale, R. L., Chertow, G. M., Owens, D. K., & Goldhaber-Fiebert, J. D. (2023). Population-Wide Screening for Chronic Kidney Disease: a Cost-Effectiveness Analysis. Annals of Internal Medicine, 176(6), 788. https://doi.org/10.7326/M22-3228
60. Garcia-Ropero, A., Badimon, J. J., & Santos-Gallego, C. G. (2018). The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opinion on Drug Metabolism & Toxicology, 14(12), 1287–1302. https://doi.org/10.1080/17425255.2018.1551877
61. Andreea, M. M., Surabhi, S., Razvan-Ionut, P., Lucia, C., Camelia, N., Emil, T., & Tiberiu, N. I. (2023). Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Harms or Unexpected Benefits? Medicina, 59(4), 742. https://doi.org/10.3390/MEDICINA59040742
62. Davies, M., Pieber, T. R., Hartoft-Nielsen, M. L., Hansen, O. K. H., Jabbour, S., & Rosenstock, J. (2017). Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA, 318(15), 1460. https://doi.org/10.1001/JAMA.2017.14752
63. Wright, E. M. (2021). SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360, 2(12), 2027–2037. https://doi.org/10.34067/KID.0002772021/-/DCSUPPLEMENTAL
64. Forzano, I., Varzideh, F., Avvisato, R., Jankauskas, S. S., Mone, P., & Santulli, G. (2022). Tirzepatide: A Systematic Update. International Journal of Molecular Sciences, 23(23). https://doi.org/10.3390/IJMS232314631
65. Jastreboff, A. M., Aronne, L. J., Ahmad, N. N., Wharton, S., Connery, L., Alves, B., Kiyosue, A., Zhang, S., Liu, B., Bunck, M. C., & Stefanski, A. (2022). Tirzepatide Once Weekly for the Treatment of Obesity. New England Journal of Medicine, 387(3), 205–216. https://doi.org/10.1056/NEJMOA2206038/SUPPL_FILE/NEJMOA2206038_DATA-SHARING.PDF
66. Frías, J. P., Davies, M. J., Rosenstock, J., Pérez Manghi, F. C., Fernández Landó, L., Bergman, B. K., Liu, B., Cui, X., & Brown, K. (2021). Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. New England Journal of Medicine, 385(6), 503–515. https://doi.org/10.1056/NEJMOA2107519/SUPPL_FILE/NEJMOA2107519_DATA-SHARING.PDF
67. Bailey, C. J., & Day, C. (2019). The future of new drugs for diabetes management. Diabetes Research and Clinical Practice, 155. https://doi.org/10.1016/J.DIABRES.2019.107785/ASSET/A063AB85-C1DD-4E92-9AED-5199F9692EFD/MAIN.ASSETS/GR2.SML
68. Lüscher, T. F. (2020). A revolution in diabetes care: novel drugs and new recommendations. European Heart Journal, 41(2), 195–198. https://doi.org/10.1093/EURHEARTJ/EHZ966
69. Ljubic, B., Hai, A. A., Stanojevic, M., Diaz, W., Polimac, D., Pavlovski, M., & Obradovic, Z. (2020). Predicting complications of diabetes mellitus using advanced machine learning algorithms. Journal of the American Medical Informatics Association : JAMIA, 27(9), 1343. https://doi.org/10.1093/JAMIA/OCAA120
70. Anderson, A. E., Kerr, W. T., Thames, A., Li, T., Xiao, J., & Cohen, M. S. (2015). Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study. Journal of Biomedical Informatics, 60, 162. https://doi.org/10.1016/J.JBI.2015.12.006
71. Li, S. (2023). Effective and Cost-Conscious Utilization of SGLT2 Inhibitors: Are Risk Scores the Answer? JACC: Heart Failure, 11(7), 836–837. https://doi.org/10.1016/J.JCHF.2023.05.008
72. Choi, J. G., Winn, A. N., Skandari, M. R., Franco, M. I., Staab, E. M., Alexander, J., Wan, W., Zhu, M., Huang, E. S., Philipson, L., & Laiteerapong, N. (2022). First-Line Therapy for Type 2 Diabetes With Sodium–Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists: A Cost-Effectiveness Study. Annals of Internal Medicine, 175(10), 1392. https://doi.org/10.7326/M21-2941
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agnieszka Parfianowicz, Alicja Surma

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 125
Number of citations: 0