Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

GLP-1 and SGLT2 Therapies in Type 2 Diabetes Mellitus. Cutting-Edge Approaches to Advancing Diabetes Care
  • Home
  • /
  • GLP-1 and SGLT2 Therapies in Type 2 Diabetes Mellitus. Cutting-Edge Approaches to Advancing Diabetes Care
  1. Home /
  2. Archives /
  3. Vol. 78 (2025) /
  4. Medical Sciences

GLP-1 and SGLT2 Therapies in Type 2 Diabetes Mellitus. Cutting-Edge Approaches to Advancing Diabetes Care

Authors

  • Agnieszka Parfianowicz District Hospital in Sochaczew https://orcid.org/0009-0009-8415-6478
  • Alicja Surma Provincial Hospital in Sochaczew https://orcid.org/0009-0009-3921-478X

DOI:

https://doi.org/10.12775/JEHS.2025.78.57478

Keywords

type 2 diabetes, flozyns, dm 2

Abstract

Type 2 diabetes mellitus (T2DM) is a multifactorial disease characterized by insulin resistance, beta-cell dysfunction, and chronic hyperglycemia. Despite the availability of conventional therapies, significant unmet needs persist in achieving optimal glycemic control and reducing long-term complications. GLP-1 receptor agonists (GLP-1 RAs) and SGLT2 inhibitors represent two novel classes of antidiabetic agents that have transformed the therapeutic landscape. This paper explores their mechanisms of action, clinical benefits, and potential synergistic effects, emphasizing their impact on cardiovascular and renal outcomes. Challenges and future directions for these agents in personalized diabetes care are also discussed.

References

1. Diabetes Facts and Figures | International Diabetes Federation , from https://idf.org/about-diabetes/diabetes-facts-figures/

2. Cole, J. B., & Florez, J. C. (2020). Genetics of diabetes and diabetes complications. Nature Reviews. Nephrology, 16(7), 377. https://doi.org/10.1038/S41581-020-0278-5

3. Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of Diabetes and Diabetes-Related Complications. Physical Therapy, 88(11), 1254. https://doi.org/10.2522/PTJ.20080020

4. Demir, S., Nawroth, P. P., Herzig, S., & Ekim Üstünel, B. (2021). Emerging Targets in Type 2 Diabetes and Diabetic Complications. Advanced Science, 8(18), 2100275. https://doi.org/10.1002/ADVS.202100275

5. Ruze, R., Liu, T., Zou, X., Song, J., Chen, Y., Xu, R., Yin, X., & Xu, Q. (2023). Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Frontiers in Endocrinology, 14, 1161521. https://doi.org/10.3389/FENDO.2023.1161521

6. Pfeiffer, A. F. H., & Klein, H. H. (2014). The Treatment of Type 2 Diabetes. Deutsches Ärzteblatt International, 111(5), 69. https://doi.org/10.3238/ARZTEBL.2014.0069

7. Wright, A. K., Carr, M. J., Kontopantelis, E., Leelarathna, L., Thabit, H., Emsley, R., Buchan, I., Mamas, M. A., van Staa, T. P., Sattar, N., Ashcroft, D. M., & Rutter, M. K. (2022). Primary Prevention of Cardiovascular and Heart Failure Events With SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Their Combination in Type 2 Diabetes. Diabetes Care, 45(4), 909–918. https://doi.org/10.2337/DC21-1113

8. Kautzky-Willer, A., Harreiter, J., & Pacini, G. (2016). Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocrine Reviews, 37(3), 278. https://doi.org/10.1210/ER.2015-1137

9. Lee, S. H., Park, S. Y., & Choi, C. S. (2021). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46(1), 15. https://doi.org/10.4093/DMJ.2021.0280

10. Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98(4), 2133. https://doi.org/10.1152/PHYSREV.00063.2017

11. Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of Oxidative Stress in Metabolic Syndrome. International Journal of Molecular Sciences, 24(9), 7898. https://doi.org/10.3390/IJMS24097898

12. Drucker, D. J. (2021). GLP-1 physiology informs the pharmacotherapy of obesity. Molecular Metabolism, 57, 101351. https://doi.org/10.1016/J.MOLMET.2021.101351

13. Drucker, D. J. (2018). Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metabolism, 27(4), 740–756. https://doi.org/10.1016/J.CMET.2018.03.001

14. Nauck, M. A., Quast, D. R., Wefers, J., & Meier, J. J. (2020). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46, 101102. https://doi.org/10.1016/J.MOLMET.2020.101102

15. Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiological Reviews, 87(4), 1409–1439. https://doi.org/10.1152/PHYSREV.00034.2006

16. Gronda, E., Jessup, M., Iacoviello, M., Palazzuoli, A., & Napoli, C. (2020). Glucose Metabolism in the Kidney: Neurohormonal Activation and Heart Failure Development. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 9(23), e018889. https://doi.org/10.1161/JAHA.120.018889

17. Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., Xu, S., Xu, Y., Hwa, J., Li, J., Shang, H., & Xiang, Y. (2021). Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein & Cell, 13(5), 336. https://doi.org/10.1007/S13238-020-00809-4

18. Ellison, D. H. (2021). SGLT2 inhibitors, hemodynamics, and kidney protection. American Journal of Physiology - Renal Physiology, 321(1), F47. https://doi.org/10.1152/AJPRENAL.00092.2021

19. Taylor, S. I., Yazdi, Z. S., & Beitelshees, A. L. (2021). Pharmacological treatment of hyperglycemia in type 2 diabetes. The Journal of Clinical Investigation, 131(2), e142243. https://doi.org/10.1172/JCI142243

20. Kahn, S. E., Cooper, M. E., & del Prato, S. (2013). PATHOPHYSIOLOGY AND TREATMENT OF TYPE 2 DIABETES: PERSPECTIVES ON THE PAST, PRESENT AND FUTURE. Lancet, 383(9922), 1068. https://doi.org/10.1016/S0140-6736(13)62154-6

21. Lau, J., Bloch, P., Schäffer, L., Pettersson, I., Spetzler, J., Kofoed, J., Madsen, K., Knudsen, L. B., McGuire, J., Steensgaard, D. B., Strauss, H. M., Gram, D. X., Knudsen, S. M., Nielsen, F. S., Thygesen, P., Reedtz-Runge, S., & Kruse, T. (2015). Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. Journal of Medicinal Chemistry, 58(18), 7370–7380. https://doi.org/10.1021/ACS.JMEDCHEM.5B00726/SUPPL_FILE/JM5B00726_SI_001.PDF

22. Kawai, T., Sun, B., Yoshino, H., Feng, D., Suzuki, Y., Fukazawa, M., Nagao, S., Wainscott, D. B., Showalter, A. D., Droz, B. A., Kobilka, T. S., Coghlan, M. P., Willard, F. S., Kawabe, Y., Kobilka, B. K., & Sloop, K. W. (2020). Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29959–29967. https://doi.org/10.1073/PNAS.2014879117/-/DCSUPPLEMENTAL

23. Danowitz, M., & de Leon, D. D. (2022). The Role of GLP-1 Signaling in Hypoglycemia due to Hyperinsulinism. Frontiers in Endocrinology, 13, 863184. https://doi.org/10.3389/FENDO.2022.863184

24. Yao, H., Zhang, A., Li, D., Wu, Y., Wang, C. Z., Wan, J. Y., & Yuan, C. S. (2024). Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. The BMJ, 384, e076410. https://doi.org/10.1136/BMJ-2023-076410

25. de Oca, alejandra P. Z. M. T. S., PelliTero, S., & PUig-DoMingo, M. (2021). obesity and glP-1. Minerva Endocrinology, 46(2), 168–176. https://doi.org/10.23736/S2724-6507.20.03369-6

26. Kadouh, H., Chedid, V., Halawi, H., Burton, D. D., Clark, M. M., Khemani, D., Vella, A., Acosta, A., & Camilleri, M. (2019). GLP-1 Analog Modulates Appetite, Taste Preference, Gut Hormones, and Regional Body Fat Stores in Adults with Obesity. The Journal of Clinical Endocrinology and Metabolism, 105(5), 1552. https://doi.org/10.1210/CLINEM/DGZ140

27. Wang, J. Y., Wang, Q. W., Yang, X. Y., Yang, W., Li, D. R., Jin, J. Y., Zhang, H. C., & Zhang, X. F. (2023). GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach. Frontiers in Endocrinology, 14, 1085799. https://doi.org/10.3389/FENDO.2023.1085799

28. Marx, N., Husain, M., Lehrke, M., Verma, infodh, & Sattar, N. (2022). GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients with Type 2 Diabetes. Circulation, 146(24), 1882–1894. https://doi.org/10.1161/CIRCULATIONAHA.122.059595/ASSET/AD09F9FB-0BF4-4C02-8C15-FE4DF1F5A441/ASSETS/GRAPHIC/CIRCULATIONAHA.122.059595.FIG01.JPG

29. Vallon, V., & Verma, S. (2020). Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annual Review of Physiology, 83, 503. https://doi.org/10.1146/ANNUREV-PHYSIOL-031620-095920

30. Bailey, C. J., Day, C., & Bellary, S. (2022). Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Current Diabetes Reports, 22(1), 39. https://doi.org/10.1007/S11892-021-01442-Z

31. Chen, S., Coronel, R., Hollmann, M. W., Weber, N. C., & Zuurbier, C. J. (2022). Direct cardiac effects of SGLT2 inhibitors. Cardiovascular Diabetology, 21(1), 45. https://doi.org/10.1186/S12933-022-01480-1

32. Beal, B., Schutte, A. E., & Neuen, B. L. (2023). Blood Pressure Effects of SGLT2 Inhibitors: Mechanisms and Clinical Evidence in Different Populations. Current Hypertension Reports, 25(12), 429–435. https://doi.org/10.1007/S11906-023-01281-1/METRICS

33. Brown, E., Wilding, J. P. H., Barber, T. M., Alam, U., & Cuthbertson, D. J. (2019). Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obesity Reviews, 20(6), 816–828. https://doi.org/10.1111/OBR.12841

34. Steiner, S. (2016). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. Zeitschrift Fur Gefassmedizin, 13(1), 17–18. https://doi.org/10.1056/NEJMOA1504720/SUPPL_FILE/NEJMOA1504720_DISCLOSURES.PDF

35. McMurray, J. J. V., Solomon, S. D., Inzucchi, S. E., Køber, L., Kosiborod, M. N., Martinez, F. A., Ponikowski, P., Sabatine, M. S., Anand, I. S., Bělohlávek, J., Böhm, M., Chiang, C.-E., Chopra, V. K., Boer, R. A. de, Desai, A. S., Diez, M., Drozdz, J., Dukát, A., Ge, J., … Langkilde, A.-M. (2019). Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381(21), 1995–2008. https://doi.org/10.1056/NEJMOA1911303

36. Toyama, T., Neuen, B. L., Jun, M., Ohkuma, T., Neal, B., Jardine, M. J., Heerspink, H. L., Wong, M. G., Ninomiya, T., Wada, T., & Perkovic, V. (2019). Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes, Obesity and Metabolism, 21(5), 1237–1250. https://doi.org/10.1111/DOM.13648

37. Perkovic, V., Jardine, M. J., Neal, B., Bompoint, S., Heerspink, H. J. L., Charytan, D. M., Edwards, R., Agarwal, R., Bakris, G., Bull, S., Cannon, C. P., Capuano, G., Chu, P.-L., de Zeeuw, D., Greene, T., Levin, A., Pollock, C., Wheeler, D. C., Yavin, Y., … Mahaffey, K. W. (2019). Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380(24), 2295–2306. https://doi.org/10.1056/NEJMOA1811744/SUPPL_FILE/NEJMOA1811744_DATA-SHARING.PDF

38. Podestà, M. A., Sabiu, G., Galassi, A., Ciceri, P., & Cozzolino, M. (2023). SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines, 11(2), 279. https://doi.org/10.3390/BIOMEDICINES11020279

39. Theodorakopoulou, M. P., & Sarafidis, P. (2023). SGLT2 inhibitors and finerenone in non-diabetic CKD: a step into the (near) future? Clinical Kidney Journal, 17(1), sfad272. https://doi.org/10.1093/CKJ/SFAD272

40. Theofilis, P., Sagris, M., Oikonomou, E., Antonopoulos, A. S., Siasos, G., Tsioufis, K., & Tousoulis, D. (2022). Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes. Diabetes Research and Clinical Practice, 188. https://doi.org/10.1016/J.DIABRES.2022.109927/ASSET/4E388F00-030C-4E59-8E2B-894802B1E2CD/MAIN.ASSETS/GA1.JPG

41. Marso, S. P., Daniels, G. H., Brown-Frandsen, K., Kristensen, P., Mann, J. F. E., Nauck, M. A., Nissen, S. E., Pocock, S., Poulter, N. R., Ravn, L. S., Steinberg, W. M., Stockner, M., Zinman, B., Bergenstal, R. M., & Buse, J. B. (2016). Liraglutide and cardiovascular outcomes in type 2 diabetes. Drug and Therapeutics Bulletin, 54(9), 101. https://doi.org/10.1056/NEJMOA1603827/SUPPL_FILE/NEJMOA1603827_DISCLOSURES.PDF

42. Marso, S. P., Bain, S. C., Consoli, A., Eliaschewitz, F. G., Jódar, E., Leiter, L. A., Lingvay, I., Rosenstock, J., Seufert, J., Warren, M. L., Woo, V., Hansen, O., Holst, A. G., Pettersson, J., & Vilsbøll, T. (2016). Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 375(19), 1834–1844. https://doi.org/10.1056/NEJMOA1607141/SUPPL_FILE/NEJMOA1607141_DISCLOSURES.PDF

43. Kristensen, S. L., Rørth, R., Jhund, P. S., Docherty, K. F., Sattar, N., Preiss, D., Køber, L., Petrie, M. C., & McMurray, J. J. V. (2019). Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet Diabetes and Endocrinology, 7(10), 776–785. https://doi.org/10.1016/S2213-8587(19)30249-9

44. Lytvyn, Y., Bjornstad, P., Udell, J. A., Lovshin, J. A., & Cherney, D. Z. I. (2017). Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications and Summary of Clinical Trials. Circulation, 136(17), 1643. https://doi.org/10.1161/CIRCULATIONAHA.117.030012

45. Goldney, J., Sargeant, J. A., & Davies, M. J. (2023). Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia, 66(10), 1832. https://doi.org/10.1007/S00125-023-05988-3

46. Vallon, V., & Thomson, S. C. (2020). The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews. Nephrology, 16(6), 317. https://doi.org/10.1038/S41581-020-0256-Y

47. Heerspink, H. J. L., Stefánsson, B. v., Correa-Rotter, R., Chertow, G. M., Greene, T., Hou, F.-F., Mann, J. F. E., McMurray, J. J. V., Lindberg, M., Rossing, P., Sjöström, C. D., Toto, R. D., Langkilde, A.-M., & Wheeler, D. C. (2020). Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383(15), 1436–1446. https://doi.org/10.1056/NEJMOA2024816/SUPPL_FILE/NEJMOA2024816_DATA-SHARING.PDF

48. Moore, P. W., Malone, K., VanValkenburg, D., Rando, L. L., Williams, B. C., Matejowsky, H. G., Ahmadzadeh, S., Shekoohi, S., Cornett, E. M., & Kaye, A. D. (2023). GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications. Advances in Therapy, 40(3), 723–742. https://doi.org/10.1007/S12325-022-02394-W/METRICS

49. Rieg, T., & Vallon, V. (2018). Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 61(10), 2079. https://doi.org/10.1007/S00125-018-4654-7

50. Knudsen, L. B., & Lau, J. (2019). The Discovery and Development of Liraglutide and Semaglutide. Frontiers in Endocrinology, 10(APR), 155. https://doi.org/10.3389/FENDO.2019.00155

51. Benham, J. L., Booth, J. E., Sigal, R. J., Daskalopoulou, S. S., Leung, A. A., & Rabi, D. M. (2021). Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. International Journal of Cardiology. Heart & Vasculature, 33, 100725. https://doi.org/10.1016/J.IJCHA.2021.100725

52. Bendotti, G., Montefusco, L., Lunati, M. E., Usuelli, V., Pastore, I., Lazzaroni, E., Assi, E., Seelam, A. J., el Essawy, B., Jang, Y., Loretelli, C., D’Addio, F., Berra, C., ben Nasr, M., Zuccotti, G. V., & Fiorina, P. (2022). The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacological Research, 182, 106320. https://doi.org/10.1016/J.PHRS.2022.106320

53. Heimke, M., Lenz, F., Rickert, U., Lucius, R., & Cossais, F. (2022). Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells, 11(19), 3107. https://doi.org/10.3390/CELLS11193107

54. Wharton, S., Davies, M., Dicker, D., Lingvay, I., Mosenzon, O., Rubino, D. M., & Pedersen, S. D. (2022). Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity: recommendations for clinical practice. Postgraduate Medicine, 134(1), 14–19. https://doi.org/10.1080/00325481.2021.2002616

55. Filippatos, T. D., Panagiotopoulou, T. v., & Elisaf, M. S. (2015). Adverse Effects of GLP-1 Receptor Agonists. The Review of Diabetic Studies : RDS, 11(3), 202. https://doi.org/10.1900/RDS.2014.11.202

56. Kittipibul, V., Cox, Z. L., Chesdachai, S., Fiuzat, M., Lindenfeld, J. A., & Mentz, R. J. (2024). Genitourinary Tract Infections in Patients Taking SGLT2 Inhibitors: JACC Review Topic of the Week. Journal of the American College of Cardiology, 83(16), 1568–1578. https://doi.org/10.1016/J.JACC.2024.01.040

57. Musso, G., Saba, F., Cassader, M., & Gambino, R. (2020). Diabetic ketoacidosis with SGLT2 inhibitors. BMJ, 371, 1–4. https://doi.org/10.1136/BMJ.M4147

58. Tentolouris, A., Vlachakis, P., Tzeravini, E., Eleftheriadou, I., & Tentolouris, N. (2019). SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. International Journal of Environmental Research and Public Health, 16(16), 2965. https://doi.org/10.3390/IJERPH16162965

59. Cusick, M. M., Tisdale, R. L., Chertow, G. M., Owens, D. K., & Goldhaber-Fiebert, J. D. (2023). Population-Wide Screening for Chronic Kidney Disease: a Cost-Effectiveness Analysis. Annals of Internal Medicine, 176(6), 788. https://doi.org/10.7326/M22-3228

60. Garcia-Ropero, A., Badimon, J. J., & Santos-Gallego, C. G. (2018). The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opinion on Drug Metabolism & Toxicology, 14(12), 1287–1302. https://doi.org/10.1080/17425255.2018.1551877

61. Andreea, M. M., Surabhi, S., Razvan-Ionut, P., Lucia, C., Camelia, N., Emil, T., & Tiberiu, N. I. (2023). Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Harms or Unexpected Benefits? Medicina, 59(4), 742. https://doi.org/10.3390/MEDICINA59040742

62. Davies, M., Pieber, T. R., Hartoft-Nielsen, M. L., Hansen, O. K. H., Jabbour, S., & Rosenstock, J. (2017). Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA, 318(15), 1460. https://doi.org/10.1001/JAMA.2017.14752

63. Wright, E. M. (2021). SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360, 2(12), 2027–2037. https://doi.org/10.34067/KID.0002772021/-/DCSUPPLEMENTAL

64. Forzano, I., Varzideh, F., Avvisato, R., Jankauskas, S. S., Mone, P., & Santulli, G. (2022). Tirzepatide: A Systematic Update. International Journal of Molecular Sciences, 23(23). https://doi.org/10.3390/IJMS232314631

65. Jastreboff, A. M., Aronne, L. J., Ahmad, N. N., Wharton, S., Connery, L., Alves, B., Kiyosue, A., Zhang, S., Liu, B., Bunck, M. C., & Stefanski, A. (2022). Tirzepatide Once Weekly for the Treatment of Obesity. New England Journal of Medicine, 387(3), 205–216. https://doi.org/10.1056/NEJMOA2206038/SUPPL_FILE/NEJMOA2206038_DATA-SHARING.PDF

66. Frías, J. P., Davies, M. J., Rosenstock, J., Pérez Manghi, F. C., Fernández Landó, L., Bergman, B. K., Liu, B., Cui, X., & Brown, K. (2021). Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. New England Journal of Medicine, 385(6), 503–515. https://doi.org/10.1056/NEJMOA2107519/SUPPL_FILE/NEJMOA2107519_DATA-SHARING.PDF

67. Bailey, C. J., & Day, C. (2019). The future of new drugs for diabetes management. Diabetes Research and Clinical Practice, 155. https://doi.org/10.1016/J.DIABRES.2019.107785/ASSET/A063AB85-C1DD-4E92-9AED-5199F9692EFD/MAIN.ASSETS/GR2.SML

68. Lüscher, T. F. (2020). A revolution in diabetes care: novel drugs and new recommendations. European Heart Journal, 41(2), 195–198. https://doi.org/10.1093/EURHEARTJ/EHZ966

69. Ljubic, B., Hai, A. A., Stanojevic, M., Diaz, W., Polimac, D., Pavlovski, M., & Obradovic, Z. (2020). Predicting complications of diabetes mellitus using advanced machine learning algorithms. Journal of the American Medical Informatics Association : JAMIA, 27(9), 1343. https://doi.org/10.1093/JAMIA/OCAA120

70. Anderson, A. E., Kerr, W. T., Thames, A., Li, T., Xiao, J., & Cohen, M. S. (2015). Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study. Journal of Biomedical Informatics, 60, 162. https://doi.org/10.1016/J.JBI.2015.12.006

71. Li, S. (2023). Effective and Cost-Conscious Utilization of SGLT2 Inhibitors: Are Risk Scores the Answer? JACC: Heart Failure, 11(7), 836–837. https://doi.org/10.1016/J.JCHF.2023.05.008

72. Choi, J. G., Winn, A. N., Skandari, M. R., Franco, M. I., Staab, E. M., Alexander, J., Wan, W., Zhu, M., Huang, E. S., Philipson, L., & Laiteerapong, N. (2022). First-Line Therapy for Type 2 Diabetes With Sodium–Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists: A Cost-Effectiveness Study. Annals of Internal Medicine, 175(10), 1392. https://doi.org/10.7326/M21-2941

Downloads

  • PDF

Published

2025-02-04

How to Cite

1.
PARFIANOWICZ, Agnieszka and ALICJA SURMA. GLP-1 and SGLT2 Therapies in Type 2 Diabetes Mellitus. Cutting-Edge Approaches to Advancing Diabetes Care. Journal of Education, Health and Sport. Online. 4 February 2025. Vol. 78, p. 57478. [Accessed 7 November 2025]. DOI 10.12775/JEHS.2025.78.57478.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 78 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Agnieszka Parfianowicz, Alicja Surma

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 434
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

type 2 diabetes, flozyns, dm 2
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop