The influence of hepatocyte growth factor on the proliferation and differentiation of stem cells
DOI:
https://doi.org/10.12775/JEHS.2025.77.57418Keywords
hepatocyte growth factor, HGF/c-MET pathway, proto-oncogene proteins c-MET, stem cells, stem cell differentiation, stem cell proliferationAbstract
Background: The HGF/c-Met signaling pathway is central to various biological processes, including tissue regeneration, cell proliferation, and differentiation. Dysregulation of this pathway has been implicated in cancer progression and poor prognosis. Despite its potential as a therapeutic target, the complexity of HGF/c-Met signaling and the associated challenges, such as off-target effects and limited understanding of its role in different disease contexts, pose significant obstacles to clinical translation.
Objectives: This review aims to examine the role of the HGF/c-Met pathway in tissue regeneration and cancer, with a focus on its therapeutic potential. We explore how HGF/c-Met signaling contributes to stem cell function, tissue repair, and cancer biology, as well as the development of targeted therapies aimed at modulating this pathway.
Methods: A thorough review of the literature was conducted, focusing on studies examining HGF/c-Met signaling in cancer and tissue regeneration. Relevant research databases were explored to identify key findings related to HGF/c-Met interactions, the effects of HGF on stem cell function, and the development of therapeutic agents targeting this pathway.
Conclusions: The HGF/c-Met pathway holds significant promise in both cancer treatment and tissue regeneration, particularly through its role in stem cell biology. Further research is needed to better understand its mechanisms and optimize targeted therapies. Combining pharmacological agents that modulate HGF/c-Met signaling with personalized treatment approaches could enhance therapeutic outcomes for cancer patients. Addressing current limitations, including the refinement of diagnostic and therapeutic strategies, will be essential in fully harnessing the potential of HGF/c-Met in clinical practice.
References
Russell, W E et al. “Partial characterization of a hepatocyte growth factor from rat platelets.” Journal of cellular physiology vol. 119,2 (1984): 183-92. doi:10.1002/jcp.1041190207
Nakamura, T et al. “Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats.” Biochemical and biophysical research communications vol. 122,3 (1984): 1450-9. doi:10.1016/0006-291x(84)91253-1
Zarnegar, R, and G Michalopoulos. “Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes.” Cancer research vol. 49,12 (1989): 3314-20.
Ueno, Masaya et al. “c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface.” Developmental cell vol. 27,4 (2013): 373-86. doi:10.1016/j.devcel.2013.10.019
D'Ippolito, G et al. “Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells.” Bone vol. 31,2 (2002): 269-75. doi:10.1016/s8756-3282(02)00820-7
Stoker, M, and M Perryman. “An epithelial scatter factor released by embryo fibroblasts.” Journal of cell science vol. 77 (1985): 209-23. doi:10.1242/jcs.77.1.209
Naldini, L et al. "Scattering factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor." EMBO Journal Vol 10.10 (1991): 2867-78. doi: 10.1002 / j.1460-2075.1991.tb07836.x
Chana-Muñoz, Andrés et al. “Origin and diversification of the plasminogen activation system among chordates.” BMC evolutionary biology vol. 19,1 27. 17 Jan. 2019, doi:10.1186/s12862-019-1353-z
Clark, D E et al. “Hepatocyte growth factor/scatter factor and its receptor c-met: localisation and expression in the human placenta throughout pregnancy.” The Journal of endocrinology vol. 151,3 (1996): 459-67. doi:10.1677/joe.0.1510459
Weidner, K M et al. “Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells.” The Journal of cell biology vol. 111,5 Pt 1 (1990): 2097-108. doi:10.1083/jcb.111.5.2097
Nakamura, T et al. “Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures.” Proceedings of the National Academy of Sciences of the United States of America vol. 83,17 (1986): 6489-93. doi:10.1073/pnas.83.17.6489
Owusu, Benjamin Y et al. “Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling.” Oncotarget vol. 7,20 (2016): 29492-506. doi:10.18632/oncotarget.8785
Gherardi, Ermanno et al. “Targeting MET in cancer: rationale and progress.” Nature reviews. Cancer vol. 12,2 89-103. 24 Jan. 2012, doi:10.1038/nrc3205
Owen, Kate A et al. “Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA.” The Biochemical journal vol. 426,2 219-28. 9 Feb. 2010, doi:10.1042/BJ20091448
Shimomura, T et al. “Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor XIIa and hepatocyte growth factor activator.” European journal of biochemistry vol. 229,1 (1995): 257-61. doi:10.1111/j.1432-1033.1995.tb20463.x
Centuori, Sara M, and Julie E Bauman. “c-Met Signaling as a Therapeutic Target in Head and Neck Cancer.” Cancer journal (Sudbury, Mass.) vol. 28,5 (2022): 346-353. doi:10.1097/PPO.0000000000000619
Grierson, I et al. “Hepatocyte growth factor/scatter factor in the eye.” Progress in retinal and eye research vol. 19,6 (2000): 779-802. doi:10.1016/s1350-9462(00)00015-x
Modica C, Tortarolo D, Comoglio PM, Basilico C, Vigna E. MET / HGF Co-Targeting in Pancreatic Cancer: A Tool to Provide Insight into the Tumor/Stroma Crosstalk. International Journal of Molecular Sciences. 2018; 19(12):3920. https://doi.org/10.3390/ijms19123920
Ponzetto, C et al. “A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family.” Cell vol. 77,2 (1994): 261-71. doi:10.1016/0092-8674(94)90318-2
Schaeper, U et al. “Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses.” The Journal of cell biology vol. 149,7 (2000): 1419-32. doi:10.1083/jcb.149.7.1419
Jiang, Sufang et al. “Multifaceted roles of HSF1 in cancer.” Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine vol. 36,7 (2015): 4923-31. doi:10.1007/s13277-015-3674-x
Gherardi, Ermanno et al. “Targeting MET in cancer: rationale and progress.” Nature reviews. Cancer vol. 12,2 89-103. 24 Jan. 2012, doi:10.1038/nrc3205
Turke, Alexa B et al. “Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC.” Cancer cell vol. 17,1 (2010): 77-88. doi:10.1016/j.ccr.2009.11.022
Petrelli, Annalisa et al. “The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met.” Nature vol. 416,6877 (2002): 187-90. doi:10.1038/416187a
Centuori, Sara M, and Julie E Bauman. “c-Met Signaling as a Therapeutic Target in Head and Neck Cancer.” Cancer journal (Sudbury, Mass.) vol. 28,5 (2022): 346-353. doi:10.1097/PPO.0000000000000619
Matsumori, A et al. “Increased circulating hepatocyte growth factor in the early stage of acute myocardial infarction.” Biochemical and biophysical research communications vol. 221,2 (1996): 391-5. doi:10.1006/bbrc.1996.0606
Nakamura, T et al. “Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF.” The Journal of clinical investigation vol. 106,12 (2000): 1511-9. doi:10.1172/JCI10226
Borowiak, Małgorzata et al. “Met provides essential signals for liver regeneration.” Proceedings of the National Academy of Sciences of the United States of America vol. 101,29 (2004): 10608-13. doi:10.1073/pnas.0403412101
Wang Haiyu, Rao Benchen, Lou Jiamin et al. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma, published 2020 Frontiers in Cell and Developmental Biology
Zhang H, Feng Q, Chen W-D, Wang Y-D. HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. International Journal of Molecular Sciences. 2018; 19(11):3295. https://doi.org/10.3390/ijms19113295
Gratzner, H G. “Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication.” Science (New York, N.Y.) vol. 218,4571 (1982): 474-5. doi:10.1126/science.7123245
L. Fajas-Coll, S. Lagarrigue, S. Hure, I. Lopez-Mejía, P.-D. Denechaud, Cell Cycle and Metabolic Changes During Tissue Regeneration and Remodeling Pathobiology of Human Disease, Academic Press, 2014, Pages 542-549
N.YangS.D.RayK.Krafts, Cell Proliferation, Reference Module in Biomedical Sciences, Encyclopedia of toxicology (third Edition), 2014, Pages 761-765,
Rodeo, Scott. “Stem Cells 101.” The American journal of sports medicine vol. 49,6 (2021): 1417-1420. doi:10.1177/03635465211011082
Herzog, Erica L et al. “Plasticity of marrow-derived stem cells.” Blood vol. 102,10 (2003): 3483-93. doi:10.1182/blood-2003-05-1664
Kim E, Wu F, Lim D, Zeuthen C, Zhang Y, Allen J, Muraine L, Trollet C, Vest KE, Choo HJ. Fibroadipogenic Progenitors Regulate the Basal Proliferation of Satellite Cells and Homeostasis of Pharyngeal Muscles via HGF Secretion. Front Cell Dev Biol. 2022 May 17;10:875209. doi: 10.3389/fcell.2022.875209. PMID: 35669512; PMCID: PMC9164287.
Prat-Vidal, Cristina et al. “Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction.” Cells vol. 10,10 2571. 28 Sep. 2021, doi:10.3390/cells10102571
Wen, Qian et al. “The Multiplicity of Infection-Dependent Effects of Recombinant Adenovirus Carrying HGF Gene on the Proliferation and Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells.” International journal of molecular sciences vol. 19,3 734. 5 Mar. 2018, doi:10.3390/ijms19030734
Kokuzawa, Jouji et al. “Hepatocyte growth factor promotes proliferation and neuronal differentiation of neural stem cells from mouse embryos.” Molecular and cellular neurosciences vol. 24,1 (2003): 190-7. doi:10.1016/s1044-7431(03)00160-x
Lin, Yuan et al. “HGF/R-spondin1 rescues liver dysfunction through the induction of Lgr5+ liver stem cells.” Nature communications vol. 8,1 1175. 27 Oct. 2017, doi:10.1038/s41467-017-01341-6
Yu, Feng et al. “HGF expression induced by HIF-1α promote the proliferation and tube formation of endothelial progenitor cells.” Cell biology international vol. 39,3 (2015): 310-7. doi:10.1002/cbin.10397
Nakamura, T et al. “Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures.” Proceedings of the National Academy of Sciences of the United States of America vol. 83,17 (1986): 6489-93. doi: 10.1073/pnas.83.17.6489
Jia, Chang-Chang et al. “Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion.” PloS one vol. 8,5 e63243. 7 May. 2013, doi:10.1371/journal.pone.0063243
Shaulian, E, and M Karin. “AP-1 in cell proliferation and survival.” Oncogene vol. 20,19 (2001): 2390-400. doi:10.1038/sj.onc.1204383
Shaulian, E et al. “The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest.” Cell vol. 103,6 (2000): 897-907. doi:10.1016/s0092-8674(00)00193-8
Takeuchi, K et al. “Signaling pathways leading to transcription and translation cooperatively regulate the transient increase in expression of c-Fos protein.” The Journal of biological chemistry vol. 276,28 (2001): 26077-83. doi:10.1074/jbc.M102704200
Gómez-Lechón, M J et al. “Cell cycle progression proteins (cyclins), oncogene expression, and signal transduction during the proliferative response of human hepatocytes to hepatocyte growth factor.” Hepatology (Baltimore, Md.) vol. 23,5 (1996): 1012-9. doi:10.1002/hep.510230511
Tacchini, L et al. “Hepatocyte growth factor signal coupling to various transcription factors depends on triggering of Met receptor and protein kinase transducers in human hepatoma cells HepG2.” Experimental cell research vol. 256,1 (2000): 272-81. doi:10.1006/excr.2000.4824
Weidner, K M et al. “Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells.” The Journal of cell biology vol. 111,5 Pt 1 (1990): 2097-108. doi:10.1083/jcb.111.5.2097
Spina, Anna et al. “HGF/c-MET Axis in Tumor Microenvironment and Metastasis Formation.” Biomedicines vol. 3,1 71-88. 22 Jan. 2015, doi:10.3390/biomedicines3010071
Bouattour, Mohamed et al. “Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma.” Hepatology (Baltimore, Md.) vol. 67,3 (2018): 1132-1149. doi:10.1002/hep.29496
Anestis, Aristomenis et al. “Current advances of targeting HGF/c-Met pathway in gastric cancer.” Annals of translational medicine vol. 6,12 (2018): 247. doi:10.21037/atm.2018.04.42
Mitra, Suvradeep et al. “Tumour angiogenesis and c-Met pathway activation - implications in breast cancer.” APMIS : acta pathologica, microbiologica, et immunologica Scandinavica vol. 128,4 (2020): 316-325. doi:10.1111/apm.13031
Zhai, Yongning et al. “Adipose-Derived Stem Cells Promote Proliferation and Invasion in Cervical Cancer by Targeting the HGF/c-MET Pathway.” Cancer management and research vol. 12 11823-11832. 18 Nov. 2020, doi:10.2147/CMAR.S277130
Peng, Jifeng et al. “Diagnosis and Prognostic Significance of c-Met in Cervical Cancer: A Meta-Analysis.” Disease markers vol. 2016 (2016): 6594016. doi:10.1155/2016/6594016
Lu, Jingxin et al. “Verticillin A suppresses HGF-induced migration and invasion via repression of the c-Met/FAK/Src pathway in human gastric and cervical cancer cells.” OncoTargets and therapy vol. 12 5823-5833. 26 Jul. 2019, doi:10.2147/OTT.S208683
Han, Junhong et al. “Hepatocyte growth factor induces redistribution of p21(CIP1) and p27(KIP1) through ERK-dependent p16(INK4a) up-regulation, leading to cell cycle arrest at G1 in HepG2 hepatoma cells.” The Journal of biological chemistry vol. 280,36 (2005): 31548-56. doi:10.1074/jbc.M503431200
Shima, N et al. “Possible involvement of p21/waf1 in the growth inhibition of HepG2 cells induced by hepatocyte growth factor.” Journal of cellular physiology vol. 177,1 (1998): 130-6. doi:10.1002/(SICI)1097-4652(199810)177:1<130::AID-JCP14>3.0.CO;2-H
Sherr, C J, and J M Roberts. “CDK inhibitors: positive and negative regulators of G1-phase progression.” Genes & development vol. 13,12 (1999): 1501-12. doi:10.1101/gad.13.12.1501
Ueno, Masaya et al. “c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface.” Developmental cell vol. 27,4 (2013): 373-86. doi:10.1016/j.devcel.2013.10.019
Kannampuzha-Francis, Jasmine et al. “Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo.” Reproduction, fertility, and development vol. 29,7 (2017): 1329-1339. doi:10.1071/RD16033
Kilby, M D et al. “Localisation of hepatocyte growth factor and its receptor (c-met) protein and mRNA in human term placenta.” Growth factors (Chur, Switzerland) vol. 13,1-2 (1996): 133-9. doi:10.3109/08977199609034573
Kauma, S et al. “The differential expression of hepatocyte growth factor and met in human placenta.” The Journal of clinical endocrinology and metabolism vol. 82,3 (1997): 949-54. doi:10.1210/jcem.82.3.380
Ma, Yeling i in. "Sygnalizacja HGF / c-Met reguluje wczesne różnicowanie komórek trofoblastów łożyska". The Journal of reproduction and development vol. 67,2 (2021): 89-97. doi:10.1262/jrd.2020-107
Yan, Xiaoshuang et al. “Activation of proHGF by St14 induces mouse embryonic stem cell differentiation.” Protein & cell vol. 7,8 (2016): 601-5. doi:10.1007/s13238-016-0282-5
Schuldiner, M et al. “Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.” Proceedings of the National Academy of Sciences of the United States of America vol. 97,21 (2000): 11307-12. doi:10.1073/pnas.97.21.11307
Kuai, Xiao Ling et al. “Generation of hepatocytes from cultured mouse embryonic stem cells.” Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society vol. 9,10 (2003): 1094-9. doi:10.1053/jlts.2003.50207
Daley, George Q et al. “Ethics. The ISSCR guidelines for human embryonic stem cell research.” Science (New York, N.Y.) vol. 315,5812 (2007): 603-4. doi:10.1126/science.1139337
Isaev, Dmitry A et al. “In vitro differentiation of human parthenogenetic stem cells into neural lineages.” Regenerative medicine vol. 7,1 (2012): 37-45. doi:10.2217/rme.11.110
Liang, Rui et al. “Differentiation of Human Parthenogenetic Embryonic Stem Cells into Functional Hepatocyte-like Cells.” Organogenesis vol. 16,4 (2020): 137-148. doi:10.1080/15476278.2020.1848237
Michalik, Marcin et al. “In Vitro Differentiation of Human Amniotic Epithelial Cells into Hepatocyte-like Cells.” Cells vol. 11,14 2138. 7 Jul. 2022, doi:10.3390/cells11142138
Clark, D E et al. “Hepatocyte growth factor/scatter factor and its receptor c-met: localisation and expression in the human placenta throughout pregnancy.” The Journal of endocrinology vol. 151,3 (1996): 459-67. doi:10.1677/joe.0.1510459
Hall, F L et al. “Phenotypic differentiation of TGF-beta1-responsive pluripotent premesenchymal prehematopoietic progenitor (P4 stem) cells from murine bone marrow.” Journal of hematotherapy & stem cell research vol. 10,2 (2001): 261-71. doi:10.1089/15258160151134962
Post, Yorick, and Hans Clevers. “Defining Adult Stem Cell Function at Its Simplest: The Ability to Replace Lost Cells through Mitosis.” Cell stem cell vol. 25,2 (2019): 174-183. doi:10.1016/j.stem.2019.07.002
Balduino, Alex et al. “Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis.” Experimental cell research vol. 318,19 (2012): 2427-37. doi:10.1016/j.yexcr.2012.07.009
Goff, J P et al. “Synergistic effects of hepatocyte growth factor on human cord blood CD34+ progenitor cells are the result of c-met receptor expression.” Stem cells (Dayton, Ohio) vol. 14,5 (1996): 592-602. doi:10.1002/stem.140592
Weimar, I S et al. “Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+).” Experimental hematology vol. 26,9 (1998): 885-94.
Sellamuthu, S et al. “In vitro trans-differentiation of human umbilical cord derived hematopoietic stem cells into hepatocyte like cells using combination of growth factors for cell based therapy.” Cytotechnology vol. 63,3 (2011): 259-68. doi:10.1007/s10616-011-9337-x
K. Yamashita, H. Matsuoka, T. Ochiai, R. Matsushita, Y. Kubuki, M. Suzuki, H. Tsubi,Hepatocyte growth factor/scatter factor enhances the thrombopoietin mRNA expression in rat hepatocytes and cirrhotic rat livers, J Gastroenterol Hepatol, 15 (2000), pp. 83-90
Koç, O N, and H M Lazarus. “Mesenchymal stem cells: heading into the clinic.” Bone marrow transplantation vol. 27,3 (2001): 235-9. doi:10.1038/sj.bmt.1702791
Taléns-Visconti, Raquel et al. “Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells.” World journal of gastroenterology vol. 12,36 (2006): 5834-45. doi:10.3748/wjg.v12.i36.5834
Sugiura, Kikuya et al. “Effect of hepatocyte growth factor on long term hematopoiesis of human progenitor cells in transgenic-severe combined immunodeficiency mice.” Cytokine vol. 37,3 (2007): 218-26. doi:10.1016/j.cyto.2007.04.001
Zavala, Gabriela et al. “Differentiation of adipose-derived stem cells to functional CD105neg CD73low melanocyte precursors guided by defined culture condition.” Stem cell research & therapy vol. 10,1 249. 9 Aug. 2019, doi:10.1186/s13287-019-1364-0
González, Paz L et al. “Chorion Mesenchymal Stem Cells Show Superior Differentiation, Immunosuppressive, and Angiogenic Potentials in Comparison With Haploidentical Maternal Placental Cells.” Stem cells translational medicine vol. 4,10 (2015): 1109-21. doi:10.5966/sctm.2015-0022
Angelopoulos, Ioannis et al. “Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential.” Cell transplantation vol. 27,6 (2018): 967-978. doi:10.1177/0963689718759649
Maumus, Marie et al. “Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes.” Biochimie vol. 95,12 (2013): 2229-34. doi:10.1016/j.biochi.2013.04.017
Ghannam, Soufiane et al. “Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications.” Stem cell research & therapy vol. 1,1 2. 15 Mar. 2010, doi:10.1186/scrt2
Thomas, Kelsey et al. “Extracellular matrix regulation in the muscle satellite cell niche.” Connective tissue research vol. 56,1 (2015): 1-8. doi:10.3109/03008207.2014.947369
Yamaura, Kazuhiro et al. “Suppression of acute and chronic rejection by hepatocyte growth factor in a murine model of cardiac transplantation: induction of tolerance and prevention of cardiac allograft vasculopathy.” Circulation vol. 110,12 (2004): 1650-7. doi:10.1161/01.CIR.0000143052.45956.71
Adams, D H et al. “Hepatocyte growth factor and macrophage inflammatory protein 1 beta: structurally distinct cytokines that induce rapid cytoskeletal changes and subset-preferential migration in T cells.” Proceedings of the National Academy of Sciences of the United States of America vol. 91,15 (1994): 7144-8. doi:10.1073/pnas.91.15.7144
Zhou, Ping et al. “Contribution of human hematopoietic stem cells to liver repair.” Seminars in immunopathology vol. 31,3 (2009): 411-9. doi:10.1007/s00281-009-0166-3
Sheehan, S M et al. “HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro.” Muscle & nerve vol. 23,2 (2000): 239-45. doi:10.1002/(sici)1097-4598(200002)23:2<239::aid-mus15>3.0.co;2-u
Chen, Jiezhong et al. “The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration.” Tissue engineering. Part B, Reviews vol. 19,6 (2013): 516-28. doi:10.1089/ten.TEB.2012.0672
Beltrami, Antonio P et al. “Adult cardiac stem cells are multipotent and support myocardial regeneration.” Cell vol. 114,6 (2003): 763-76. doi:10.1016/s0092-8674(03)00687-1
D'Ippolito, G et al. “Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells.” Bone vol. 31,2 (2002): 269-75. doi:10.1016/s8756-3282(02)00820-7
Urbanek, Konrad et al. “Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival.” Circulation research vol. 97,7 (2005): 663-73. doi:10.1161/01.RES.0000183733.53101.11
Hamasuna, R et al. “Regulation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP.” International journal of cancer vol. 82,2 (1999): 274-81. doi:10.1002/(sici)1097-0215(19990719)82:2<274::aid-ijc19>3.0.co;2-2
Nakamura, Takahiro et al. “Hepatocyte growth factor twenty years on: Much more than a growth factor.” Journal of gastroenterology and hepatology vol. 26 Suppl 1 (2011): 188-202. doi:10.1111/j.1440-1746.2010.06549.x
Sugiura, Tomoko et al. “Pharmacokinetic modeling of hepatocyte growth factor in experimental animals and humans.” Journal of pharmaceutical sciences vol. 102,1 (2013): 237-49. doi:10.1002/jps.23337
Puccini, Alberto et al. “Safety and Tolerability of c-MET Inhibitors in Cancer.” Drug safety vol. 42,2 (2019): 211-233. doi:10.1007/s40264-018-0780-x
J.H. Kim, B.J. Kim, H.S. Kim Clinicopathological impacts of high c-Met expression in head and neck squamous cell carcinoma: a meta-analysis and review Oncotarget., 8 (2017), Article 113120
F. Moosavi, E. Giovannetti, L. Saso, O. Firuzi HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers Crit. Rev. Clin. Lab. Sci., 56 (2019), pp. 533-566
Aftab, D T, and D M McDonald. “MET and VEGF: synergistic targets in castration-resistant prostate cancer.” Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico vol. 13,10 (2011): 703-9. doi:10.1007/s12094-011-0719-5
You, Weon-Kyoo et al. “VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer.” Cancer research vol. 71,14 (2011): 4758-68. doi:10.1158/0008-5472.CAN-10-2527
Turke, Alexa B et al. “Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC.” Cancer cell vol. 17,1 (2010): 77-88. doi:10.1016/j.ccr.2009.11.022
Shojaei, Farbod et al. “HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors.” Cancer research vol. 70,24 (2010): 10090-100. doi:10.1158/0008-5472.CAN-10-0489
Kim, Ki-Hyun, and Hyori Kim. “Progress of antibody-based inhibitors of the HGF-cMET axis in cancer therapy.” Experimental & molecular medicine vol. 49,3 e307. 24 Mar. 2017, doi:10.1038/emm.2017.17
Hong, Lingzhi et al. “Current and future treatment options for MET exon 14 skipping alterations in non-small cell lung cancer.” Therapeutic advances in medical oncology vol. 13 1758835921992976. 15 Feb. 2021, doi:10.1177/1758835921992976
X. Zhao, et al. Clinicopathological and prognostic significance of c-Met overexpression in breast cancer Oncotarget., 8 (2017), p. 56758
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rafał Bieś, Agnieszka Mikosińska, Jakub Parys, Mateusz Litwin, Patrycja Kałuziak, Marta Jajczak, Maciej Mossakowski, Aleksandra Witek, Martyna Kaźmierczak, Stanisław Jesionek
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 25
Number of citations: 0