Advancing Alzheimer’s Diagnosis: The Role of AI - A Review
DOI:
https://doi.org/10.12775/JEHS.2025.77.57093Keywords
Alzheimer's disease, neurodegenerative disease, dementia, AI, artificial intelligenceAbstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for more than half of all cases of dementia worldwide. An aging society therefore poses a huge challenge to medicine. The exact mechanism responsible for this disease is still not fully understood. However, theories of neurodegeneration related to the deposition of pathological proteins in the brain and the imbalance between individual neurotransmitters have allowed the development of effective diagnostic methods - laboratory determination of specific biomarkers (tau protein, β-amyloid) and their marking using PET (Amyloid PET, Tau PET). Magnetic resonance imaging (MRI) is also important in diagnostics. Artificial intelligence (AI) is a promising, new, and rapidly developing path that can significantly affect the diagnostic process of Alzheimer's disease.
Purpose of the study: This review examines the role of AI in diagnosing Alzheimer's disease.
Materials and methods: A comprehensive literature review was conducted, analyzing 63 studies from the PubMed database (in English, up to December 2024) that assessed the effectiveness, methods, and prospects of AI in the diagnosis of Alzheimer's disease.
Conclusions: Share of AI in the diagnosis of Alzheimer's disease is extremely promising. AI used in neuroimaging, genetics, and behavioral biomarkers shows great potential diagnostic. AI-based tools are extremely promising because they can be non-invasive and highly sensitive biomarkers. Optical coherence tomography (OCT) and OCT angiography (OCTA) combined with AI models offer an opportunity for cost-effective and rapid diagnostic pathways for AD. This review presents evidence that artificial intelligence is a key factor in transforming AD diagnostics into modern diagnostics that enable earlier detection and treatment of the disease which may consequently positively impact the quality of life of AD patients and their caregivers.
References
1. Timon CM, Heffernan E, Kilcullen S, et al. Developing Independent Living Support for Older Adults Using Internet of Things and AI-Based Systems: Co-Design Study. JMIR Aging. 2024;7:e54210. Published 2024 Oct 24. https://doi.org/10.2196/54210
2. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. https://doi.org/10.1016/S0140-6736(20)32205-4
3. Lewis C, Buffel T. Aging in place and the places of aging: A longitudinal study. J Aging Stud. 2020;54:100870. https://doi.org/10.1016/j.jaging.2020.100870
4. Ferretti MT, Iulita MF, Cavedo E, et al. Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol. 2018;14(8):457-469. https://doi.org/10.1038/s41582-018-0032-9
5. Abadir P, Oh E, Chellappa R, et al. Artificial Intelligence and Technology Collaboratories: Innovating aging research and Alzheimer's care. Alzheimers Dement. 2024;20(4):3074-3079. https://doi.org/10.1002/alz.13710
6. Ageing and health. World Health Organization. 2022. [15-08-2023]. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health URL. Accessed.
7. Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer's disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33. Published 2019 May 9. https://doi.org/10.1186/s12929-019-0524-y
8. Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol. 2020;18(11):1106-1125. https://doi.org/10.2174/1570159X18666200528142429
9. Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides. 2015;52:1-18. https://doi.org/10.1016/j.npep.2015.06.008
10. Begcevic I, Brinc D, Brown M, et al. Brain-related proteins as potential CSF biomarkers of Alzheimer's disease: A targeted mass spectrometry approach. J Proteomics. 2018;182:12-20. https://doi.org/10.1016/j.jprot.2018.04.027
11. Huang F, Wang M, Liu R, et al. CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimer's disease. Alzheimers Dement. 2019;15(2):217-231.https://doi.org/10.1016/j.jalz.2018.08.013
12. Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018;141(7):1917-1933. https://doi.org/10.1093/brain/awy132
13. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-115. https://doi.org/10.2174/1570159x13666150716165726
14. Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci. 2018;11:254. Published 2018 Jul 27. https://doi.org/10.3389/fnmol.2018.00254
15. Vakalopoulos C. Alzheimer's Disease: The Alternative Serotonergic Hypothesis of Cognitive Decline. J Alzheimers Dis. 2017;60(3):859-866. https://doi.org/10.3233/JAD-170364
16. Luca M, Di Mauro M, Di Mauro M, Luca A. Gut Microbiota in Alzheimer's Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxid Med Cell Longev. 2019;2019:4730539. Published 2019 Apr 17. https://doi.org/10.1155/2019/4730539
17. Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease. Nat Immunol. 2015;16(3):229-236. https://doi.org/10.1038/ni.3102
18. MahmoudianDehkordi S, Arnold M, Nho K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome [published correction appears in Alzheimers Dement. 2019 Apr;15(4):604. doi: 10.1016/j.jalz.2019.03.002]. Alzheimers Dement. 2019;15(1):76-92. https://doi.org/10.1016/j.jalz.2018.07.217
19. Cheng F, Wang F, Tang J, et al. Artificial intelligence and open science in discovery of disease-modifying medicines for Alzheimer's disease. Cell Rep Med. 2024;5(2):101379.https://doi.org/10.1016/j.xcrm.2023.101379
20. Jack CR Jr, Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement. 2024;20(8):5143-5169. https://doi.org/10.1002/alz.13859
21. T P, V S. Identification of Alzheimer's Disease by Imaging: A Comprehensive Review. Int J Environ Res Public Health. 2023;20(2):1273. Published 2023 Jan 10. https://doi.org/10.3390/ijerph20021273
22. Kolanko MA, Win Z, Loreto F, et al. Amyloid PET imaging in clinical practice. Pract Neurol. 2020;20(6):451-462. https://doi.org/10.1136/practneurol-2019-002468
23. Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement. 2013;9(1):e-16. https://doi.org/10.1016/j.jalz.2013.01.002
24. Cassinelli Petersen G, Roytman M, Chiang GC, Li Y, Gordon ML, Franceschi AM. Overview of tau PET molecular imaging. Curr Opin Neurol. 2022;35(2):230-239. https://doi.org/10.1097/WCO.0000000000001035
25. Marquié M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787-800. https://doi.org/10.1002/ana.24517
26. Yamanakkanavar N, Choi JY, Lee B. MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey. Sensors. 2020; 20(11):3243. https://doi.org/10.3390/s20113243
27. Sunil S. Khatal, Krishna Prasad K (2024) HD-CNN: Early-stage Alzheimer Detection system using Hybrid Deep Convolutional Neural Network. Library Progress International, 44(3), 25838-25845
28. Li, Renjie (2024). Using artificial intelligence (AI)-based computer vision methods to investigate associations between hand movement and Alzheimer’s Disease (AD) risk. University of Tasmania. Thesis. https://doi.org/10.25959/26093743.v1
29. Rahat IS, Hossain T, Ghosh H, Kanth Reddy KL, Palvadi SK, Ravindra JVR. Exploring Deep Learning Models for Accurate Alzheimer’s Disease Classification based on MRI Imaging. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Mar. 26 [cited 2024 Dec. 16];10. https://doi.org/10.4108/eetpht.10.5550
30. Boyle AJ, Gaudet VC, Black SE, Vasdev N, Rosa-Neto P, Zukotynski KA. Artificial intelligence for molecular neuroimaging. Ann Transl Med 2021;9(9):822. doi: 10.21037/atm-20-6220 doi: 10.21037/atm-20-6220
31. Chen H, Du H, Yi F, et al. Artificial intelligence–assisted oculo-gait measurements for cognitive impairment in cerebral small vessel disease. Alzheimer's Dement. 2024; 1-11. https://doi.org/10.1002/alz.14288
32. Ashayeri, H., Jafarizadeh, A., Yousefi, M. et al. Retinal imaging and Alzheimer’s disease: a future powered by Artificial Intelligence. Graefes Arch Clin Exp Ophthalmol 262, 2389–2401 (2024). https://doi.org/10.1007/s00417-024-06394-0
33. Prats-Climent, J.; Gandia-Ferrero, MT.; Torres-Espallardo, I.; Álvarez-Sanchez, L.; Martinez-Sanchis, B.; Cháfer-Pericás, C.; Gómez-Rico, I.... (2022). Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease. Journal of Medical Systems. 46(8):1-13. https://doi.org/10.1007/s10916-022-01836-w
34. Bahado-Singh RO, Radhakrishna U, Gordevičius J, Aydas B, Yilmaz A, Jafar F, Imam K, Maddens M, Challapalli K, Metpally RP, et al. Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer’s Disease. Cells. 2022; 11(11):1744. https://doi.org/10.3390/cells11111744
35. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206(4):319-348. https://doi.org/10.1111/j.1469-7580.2005.00395.x
36. Koronyo Y, Rentsendorj A, Mirzaei N, et al. Retinal pathological features and proteome signatures of Alzheimer's disease. Acta Neuropathol. 2023;145(4):409-438. doi:10.1007/s00401-023-02548-2 https://doi.org/10.1007/s00401-023-02548-2
37. Swerdlow RH. Pathogenesis of Alzheimer's disease. Clin Interv Aging. 2007;2(3):347-359.
38. Katsimpris A, Karamaounas A, Sideri AM, Katsimpris J, Georgalas I, Petrou P. Optical coherence tomography angiography in Alzheimer's disease: a systematic review and meta-analysis. Eye (Lond). 2022;36(7):1419-1426. https://doi.org/10.1038/s41433-021-01648-1
39. Xie J, Yi Q, Wu Y, et al. Deep segmentation of OCTA for evaluation and association of changes of retinal microvasculature with Alzheimer's disease and mild cognitive impairment. Br J Ophthalmol. 2024;108(3):432-439. Published 2024 Feb 21. https://doi.org/10.1136/bjo-2022-321399
40. Hao J, Kwapong WR, Shen T, et al. Early detection of dementia through retinal imaging and trustworthy AI. NPJ Digit Med. 2024;7(1):294. Published 2024 Oct 20. Hao J, Kwapong WR, Shen T, et al. Early detection of dementia through retinal imaging and trustworthy AI. NPJ Digit Med. 2024;7(1):294. Published 2024 Oct 20.
41. Akcesme B, Islam N, Lekic D, Cutuk R, Basovic N. Analysis of Alzheimer's disease associated deleterious non-synonymous single nucleotide polymorphisms and their impacts on protein structure and function by performing in-silico methods. Neurogenetics. 2024;26(1):8. Published 2024 Nov 26.https://doi.org/10.1007/s10048-024-00786-4
42. Cai J, Liu Y, Fan H. Review on pathogenesis and treatment of Alzheimer's disease. Dev Dyn. Published online December 9, 2024. https://doi.org/10.1002/dvdy.762
43. https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/snp
44. Ahmed H, Soliman H, Elmogy M. Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree. Comput Biol Med. 2022;146:105622. https://doi.org/10.1016/j.compbiomed.2022.105622
45. Husain MA, Laurent B, Plourde M. APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics. Front Neurosci. 2021;15:630502. Published 2021 Feb 17. https://doi.org/10.3389/fnins.2021.630502
46. Ray NR, Ayodele T, Jean-Francois M, et al. The Early-Onset Alzheimer's Disease Whole-Genome Sequencing Project: Study design and methodology. Alzheimers Dement. 2023;19(9):4187-4195. https://doi.org/10.1002/alz.13370
47. Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol. 2020;18(11):1106-1125. https://doi.org/10.2174/1570159X18666200528142429
48. Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer's disease stage. Sci Rep. 2021;11(1):3254. Published 2021 Feb 5. https://doi.org/10.1038/s41598-020-74399-w
49. Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M. Alzheimer's Disease-Biochemical and Psychological Background for Diagnosis and Treatment. Int J Mol Sci. 2023;24(2):1059. Published 2023 Jan 5. https://doi.org/10.3390/ijms24021059
50. Atri A. The Alzheimer's Disease Clinical Spectrum: Diagnosis and Management. Med Clin North Am. 2019;103(2):263-293. https://doi.org/10.1016/j.mcna.2018.10.009
51. Singh B, Day CM, Abdella S, Garg S. Alzheimer's disease current therapies, novel drug delivery systems and future directions for better disease management. J Control Release. 2024;367:402-424. https://doi.org/10.1016/j.jconrel.2024.01.047
52. Chu LW. Alzheimer's disease: early diagnosis and treatment. Hong Kong Med J. 2012;18(3):228-237.
53. Mühlbauer V, Möhler R, Dichter MN, Zuidema SU, Köpke S, Luijendijk HJ. Antipsychotics for agitation and psychosis in people with Alzheimer's disease and vascular dementia. Cochrane Database Syst Rev. 2021;12(12):CD013304. Published 2021 Dec 17. https://doi.org/10.1002/14651858.CD013304.pub2
54. Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology. 2021;190:108352. https://doi.org/10.1016/j.neuropharm.2020.108352
55. Kuns B, Rosani A, Patel P, et al. Memantine. [Updated 2024 Jan 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500025/
56. Varadharajan A, Davis AD, Ghosh A, et al. Guidelines for pharmacotherapy in Alzheimer's disease - A primer on FDA-approved drugs. J Neurosci Rural Pract. 2023;14(4):566-573. https://doi.org/10.25259/JNRP_356_2023
57. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. https://doi.org/10.1016/S0140-6736(20)32205-4
58. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1):e12050. Published 2020 Jul 16.https://doi.org/10.1002/trc2.12050
59. Tampi RR, Forester BP, Agronin M. Aducanumab: evidence from clinical trial data and controversies. Drugs Context. 2021;10:2021-7-3. Published 2021 Oct 4. https://doi.org/10.7573/dic.2021-7-3
60. Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer's Disease. Neurotherapeutics. 2023;20(1):195-206. https://doi.org/10.1007/s13311-022-01308-6
61. Rahman A, Hossen MA, Chowdhury MFI, et al. Aducanumab for the treatment of Alzheimer's disease: a systematic review. Psychogeriatrics. 2023;23(3):512-522. https://doi.org/10.1111/psyg.12944
62. Vitek GE, Decourt B, Sabbagh MN. Lecanemab (BAN2401): an anti-beta-amyloid monoclonal antibody for the treatment of Alzheimer disease. Expert Opin Investig Drugs. 2023;32(2):89-94. https://doi.org/10.1080/13543784.2023.2178414
63. Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M. Alzheimer's Disease-Biochemical and Psychological Background for Diagnosis and Treatment. Int J Mol Sci. 2023;24(2):1059. Published 2023 Jan 5. https://doi.org/10.3390/ijms24021059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dominka Rehan, Sven Solisch, Anna Blazhkova , Anna Susłow, Adam Szwed, Ewa Szczęsna
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 107
Number of citations: 0