Potential benefits of GLP-1 analogues and metformin in patients with osteoarthritis
DOI:
https://doi.org/10.12775/JEHS.2025.77.56953Keywords
osteoarthritis,, Glucagon-like peptide-1 (GLP-1), Liraglutide, Semaglutide, Anti-obesity medications, Weight management, Total knee arthroplasty, Total hip arthroplastyAbstract
Introduction and purpose
Osteoarthritis (OA) is the most prevalent chronic joint disorder. It is the primary cause of chronic pain. Known risk factors for OA include obesity and type 2 diabetes mellitus (T2DM). One of the challenges in managing OA is the absence of disease-modifying treatments. Since obesity is an independent risk factor of OA, the use of medications like GLP-1 analogs and metformin may benefit patients with OA. The purpose of our article was to provide an overview of the findings from studies on the use of the mentioned drugs in OA patients.
Materials and methods
To write this article, databases such as PubMed and Google Scholar were searched using the following terms: osteoarthritis, glucagon-like peptide-1 (GLP-1), obesity, anti-obesity medications.
Description of the state of knowledge
Research on the effects of GLP-1 analogs in OA patients has yielded inconclusive results. Some studies showed that semaglutide provided benefits in reducing knee osteoarthritis symptoms in obese, nondiabetic patients. For those with knee OA and T2DM, GLP-1 receptor agonists lowered body weight and pain intensity. Furthermore, patients treated with GLP-1 receptor agonists have a reduced risk of knee surgery and lower cartilage loss velocity. Patients receiving semaglutide who underwent arthroplasty procedures experienced lower risks of prosthetic infections and hospital readmissions. The use of metformin was associated with reduced rates of joint replacement surgery.
Conclusions
GLP-1-based therapies and metformin, due to their pleiotropic effects, may provide advantages by alleviating joint inflammation and facilitating weight loss in OA patients. Additional research is required to validate these outcomes and identify the most effective treatment approaches for managing OA.
References
Long H, Liu Q, Yin H, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022;74(7):1172-1183. doi:10.1002/art.42089
Meurot C, Jacques C, Martin C, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity?. J Orthop Translat. 2022;32:121-129. Published 2022 Feb 25. doi:10.1016/j.jot.2022.02.001
Xia B, Di Chen, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 2014;95(6):495-505. doi:10.1007/s00223-014-9917-9
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines. 2024;12(8):1630. Published 2024 Jul 23. doi:10.3390/biomedicines12081630
Meurot C, Martin C, Sudre L, et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci Rep. 2022;12(1):1567. Published 2022 Jan 28. doi:10.1038/s41598-022-05323-7
Veronese N, Cooper C, Reginster JY, et al. Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum. 2019;49(1):9-19. doi:10.1016/j.semarthrit.2019.01.005
Messier SP, Loeser RF, Miller GD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum. 2004;50(5):1501-1510. doi:10.1002/art.20256
Katz JN, Arant KR, Loeser RF. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA. 2021 Feb 9;325(6):568-578. doi: 10.1001/jama.2020.22171. PMID: 33560326; PMCID: PMC8225295.
Cicuttini FM, Proietto J, Lim YZ. Our biology working against us in obesity: A narrative review on implications for management of osteoarthritis. Osteoarthr Cartil Open. 2023;5(4):100407. Published 2023 Sep 9. doi:10.1016/j.ocarto.2023.100407
Amanatullah DF, Ohanisian L, Bailony R. Medications Available for Weight Reduction in Elective Total Joint Arthroplasty. JBJS Rev. 2020;8(6):e0123. doi:10.2106/JBJS.RVW.19.00123
Felson DT. Glucagon-Like Peptide-1 Receptor Agonists and Osteoarthritis. N Engl J Med. 2024;391(17):1643-1644. doi:10.1056/NEJMe2409972
Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. American College of Rheumatology Subcommittee on Osteoarthritis Guidelines. Arthritis Rheum. 2000;43(9):1905-1915. doi:10.1002/1529-0131(200009)43:9<1905::AID-ANR1>3.0.CO;2-P
Pendleton A, Arden N, Dougados M, et al. EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis. 2000;59(12):936-944. doi:10.1136/ard.59.12.936
Ruze R, Liu T, Zou X, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne). 2023;14:1161521. Published 2023 Apr 21. doi:10.3389/fendo.2023.1161521
Piva SR, Susko AM, Khoja SS, Josbeno DA, Fitzgerald GK, Toledo FG. Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin Geriatr Med. 2015;31(1):67-viii. doi:10.1016/j.cger.2014.08.019
Lee YS, Jun HS. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators Inflamm. 2016;2016:3094642. doi:10.1155/2016/3094642
Hunter DJ. Pharmacologic therapy for osteoarthritis--the era of disease modification. Nat Rev Rheumatol. 2011;7(1):13-22. doi:10.1038/nrrheum.2010.178
Kim S, Jeong J, Jung HS, et al. Anti-inflammatory Effect of Glucagon Like Peptide-1 Receptor Agonist, Exendin-4, through Modulation of IB1/JIP1 Expression and JNK Signaling in Stroke. Exp Neurobiol. 2017;26(4):227-239. doi:10.5607/en.2017.26.4.227
Reed J, Bain S, Kanamarlapudi V. Recent advances in understanding the role of glucagon-like peptide 1. F1000Res. 2020;9:F1000 Faculty Rev-239. Published 2020 Apr 6. doi:10.12688/f1000research.20602.1
Wong CK, McLean BA, Baggio LL, et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 2024;36(1):130-143.e5. doi:10.1016/j.cmet.2023.11.009
Mert I, Cetinkaya A, Gurler M, et al. Anti-inflammatory potential of liraglutide, a glucagon-like peptide-1 receptor agonist, in rats with peripheral acute inflammation. Inflammopharmacology. 2022;30(3):1093-1105. doi:10.1007/s10787-022-00978-0
Halloum W, Dughem YA, Beier D, Pellesi L. Glucagon-like peptide-1 (GLP-1) receptor agonists for headache and pain disorders: a systematic review. J Headache Pain. 2024;25(1):112. Published 2024 Jul 12. doi:10.1186/s10194-024-01821-3
Gudbergsen H, Overgaard A, Henriksen M, et al. Liraglutide after diet-induced weight loss for pain and weight control in knee osteoarthritis: a randomized controlled trial. Am J Clin Nutr. 2021;113(2):314-323. doi:10.1093/ajcn/nqaa328
Bliddal H, Bays H, Czernichow S, et al. Once-Weekly Semaglutide in Persons with Obesity and Knee Osteoarthritis. N Engl J Med. 2024;391(17):1573-1583. doi:10.1056/NEJMoa2403664
Zhu H, Zhou L, Wang Q, et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-1226. doi:10.1136/ard-2023-223845
George J, Klika AK, Navale SM, Newman JM, Barsoum WK, Higuera CA. Obesity Epidemic: Is Its Impact on Total Joint Arthroplasty Underestimated? An Analysis of National Trends. Clin Orthop Relat Res. 2017;475(7):1798-1806. doi:10.1007/s11999-016-5222-4
Magruder ML, Yao VJH, Rodriguez AN, Ng MK, Sasson V, Erez O. Does Semaglutide Use Decrease Complications and Costs Following Total Knee Arthroplasty?. J Arthroplasty. 2023;38(11):2311-2315.e1. doi:10.1016/j.arth.2023.05.071
Magruder ML, Miskiewicz MJ, Rodriguez AN, Mont MA. Semaglutide Use Prior to Total Hip Arthroplasty Results in Fewer Postoperative Prosthetic Joint Infections and Readmissions. J Arthroplasty. 2024;39(3):716-720. doi:10.1016/j.arth.2023.12.023
Markowicz-Piasecka M, Sadkowska A, Huttunen KM, Podsiedlik M, Mikiciuk-Olasik E, Sikora J. An investigation into the pleiotropic activity of metformin. A glimpse of haemostasis. Eur J Pharmacol. 2020;872:172984. doi:10.1016/j.ejphar.2020.172984
Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling [published correction appears in Ann Rheum Dis. 2020 Sep;79(9):e119. doi: 10.1136/annrheumdis-2019-216713corr1]. Ann Rheum Dis. 2020;79(5):635-645. doi:10.1136/annrheumdis-2019-216713
Lu CH, Chung CH, Lee CH, et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. PLoS One. 2018;13(1):e0191242. Published 2018 Jan 31. doi:10.1371/journal.pone.0191242
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anna Skowronek, Martyna Piekarska, Katarzyna Dąbek, Michał Ochwat, Maria Sudoł, Gabriela Mierzwa, Aleksandra Kajtel, Tomasz Skowronek
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 51
Number of citations: 0