Application of Artificial Intelligence in Radiological Image Analysis for Pulmonary Disease Diagnosis: A Review of Current Methods and Challenges
DOI:
https://doi.org/10.12775/JEHS.2025.77.56893Keywords
artificial intelligence, AI, lung diseaseAbstract
Introduction and purpose
Artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), is revolutionizing radiology by improving diagnostic accuracy and efficiency. This paper examines AI applications, especially convolutional neural networks (CNNs), in diagnosing pulmonary diseases, such as pneumonia, tuberculosis, and lung cancer. The goal is to explore the impact of these technologies and assess challenges in their integration into clinical practice.
Material and methods
This review is based on articles from the PubMed database, published between 2015 and 2024, using keywords such as artificial intelligence in radiology, AI in medicine, AI in chest X-ray, and AI in chest-CT.
Results
AI, driven by ML and DL, has significantly enhanced medical imaging analysis, automating tasks that require expert interpretation. CNNs excel in processing raw image data and identifying hierarchical features, surpassing traditional methods in diagnosing lung diseases from radiographs and CT scans. AI systems demonstrate exceptional accuracy in detecting pneumonia, tuberculosis, and lung cancer, providing rapid, consistent results, particularly valuable in resource-limited settings. However, challenges persist, including the need for diverse training datasets, model interpretability, and integration into existing workflows.
Conclusions
AI, especially CNN-based DL models, is reshaping radiology by advancing diagnostic capabilities. While it often outperforms traditional methods, AI is best used to complement human expertise. Overcoming challenges in data quality, system integration, and training is essential for broader clinical adoption. Continued research will enhance AI’s reliability and utility, ultimately improving patient outcomes.
References
Langlotz CP. The Future of AI and Informatics in Radiology: 10 Predictions. Radiology. 2023 Oct;309(1):e231114. doi: 10.1148/radiol.231114. PMID: 37874234; PMCID: PMC10623186.
Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, Matsui Y, Nozaki T, Nakaura T, Fujima N, Tatsugami F, Yanagawa M, Hirata K, Yamada A, Tsuboyama T, Kawamura M, Fujioka T, Naganawa S. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. 2024 Jan;42(1):3-15. doi: 10.1007/s11604-023-01474-3. Epub 2023 Aug 4. PMID: 37540463; PMCID: PMC10764412
Kitamura FC, Topol EJ. The Initial Steps of Multimodal AI in Radiology. Radiology. 2023 Oct;309(1):e232372. doi: 10.1148/radiol.232372. PMID: 37787677; PMCID: PMC10623182.
Deo RC. Machine Learning in Medicine. Circulation. 2015 Nov 17;132(20):1920-30. doi: 10.1161/CIRCULATIONAHA.115.001593. PMID: 26572668; PMCID: PMC5831252.
Chassagnon G, De Margerie-Mellon C, Vakalopoulou M, Marini R, Hoang-Thi TN, Revel MP, Soyer P. Artificial intelligence in lung cancer: current applications and perspectives. Jpn J Radiol. 2023 Mar;41(3):235-244. doi: 10.1007/s11604-022-01359-x. Epub 2022 Nov 9. PMID: 36350524; PMCID: PMC9643917.
Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019 Apr;49(4):939-954. doi: 10.1002/jmri.26534. Epub 2018 Dec 21. PMID: 30575178; PMCID: PMC6483404.
Hwang EJ, Park CM. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges. Korean J Radiol. 2020 May;21(5):511-525. doi: 10.3348/kjr.2019.0821. PMID: 32323497; PMCID: PMC7183830.
Monshi MMA, Poon J, Chung V. Deep learning in generating radiology reports: A survey. Artif Intell Med. 2020 Jun;106:101878. doi: 10.1016/j.artmed.2020.101878. Epub 2020 May 15. PMID: 32425358; PMCID: PMC7227610.
Jin H, Wagner MW, Ertl-Wagner B, Khalvati F. An Educational Graphical User Interface to Construct Convolutional Neural Networks for Teaching Artificial Intelligence in Radiology. Canadian Association of Radiologists Journal. 2023;74(3):526-533. doi:10.1177/08465371221144264
Shah STH, Shah SAH, Khan II, Imran A, Shah SBH, Mehmood A, Qureshi SA, Raza M, Di Terlizzi A, Cavaglià M, Deriu MA. Data-driven classification and explainable-AI in the field of lung imaging. Front Big Data. 2024 Sep 19;7:1393758. doi: 10.3389/fdata.2024.1393758. PMID: 39364222; PMCID: PMC11446784.
Yao JC, Wang T, Hou GH, Ou D, Li W, Zhu QD, Chen WC, Yang C, Wang LJ, Wang LP, Fan LY, Shi KY, Zhang J, Xu D, Li YQ. AI detection of mild COVID-19 pneumonia from chest CT scans. Eur Radiol. 2021 Sep;31(9):7192-7201. doi: 10.1007/s00330-021-07797-x. Epub 2021 Mar 18. PMID: 33738595; PMCID: PMC7971359.
Kim Y, Park JY, Hwang EJ, Lee SM, Park CM. Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology. J Thorac Dis. 2021 Dec;13(12):6943-6962. doi: 10.21037/jtd-21-1342. PMID: 35070379; PMCID: PMC8743417.
Viswanathan VS, Toro P, Corredor G, Mukhopadhyay S, Madabhushi A. The state of the art for artificial intelligence in lung digital pathology. J Pathol. 2022 Jul;257(4):413-429. doi: 10.1002/path.5966. Epub 2022 Jun 20. PMID: 35579955; PMCID: PMC9254900.
Hussain A, Marlowe S, Ali M, Uy E, Bhopalwala H, Gullapalli D, Vangara A, Haroon M, Akbar A, Piercy J. A Systematic Review of Artificial Intelligence Applications in the Management of Lung Disorders. Cureus. 2024 Jan 3;16(1):e51581. doi: 10.7759/cureus.51581. PMID: 38313926; PMCID: PMC10836179.
Binczyk F, Prazuch W, Bozek P, Polanska J. Radiomics and artificial intelligence in lung cancer screening. Transl Lung Cancer Res. 2021 Feb;10(2):1186-1199. doi: 10.21037/tlcr-20-708. PMID: 33718055; PMCID: PMC7947422.
Cellina M, Cacioppa LM, Cè M, Chiarpenello V, Costa M, Vincenzo Z, Pais D, Bausano MV, Rossini N, Bruno A, Floridi C. Artificial Intelligence in Lung Cancer Screening: The Future Is Now. Cancers (Basel). 2023 Aug 30;15(17):4344. doi: 10.3390/cancers15174344. PMID: 37686619; PMCID: PMC10486721.
Dunn B, Pierobon M, Wei Q. Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis. Bioengineering (Basel). 2023 Jun 6;10(6):690. doi: 10.3390/bioengineering10060690. PMID: 37370621; PMCID: PMC10295141.
Bian H, Zhu S, Zhang Y, Fei Q, Peng X, Jin Z, Zhou T, Zhao H. Artificial Intelligence in Chronic Obstructive Pulmonary Disease: Research Status, Trends, and Future Directions --A Bibliometric Analysis from 2009 to 2023. Int J Chron Obstruct Pulmon Dis. 2024 Aug 21;19:1849-1864. doi: 10.2147/COPD.S474402. PMID: 39185394; PMCID: PMC11345018.
Wu JT, Wong KCL, Gur Y, Ansari N, Karargyris A, Sharma A, Morris M, Saboury B, Ahmad H, Boyko O, Syed A, Jadhav A, Wang H, Pillai A, Kashyap S, Moradi M, Syeda-Mahmood T. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. JAMA Netw Open. 2020 Oct 1;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779. PMID: 33034642; PMCID: PMC7547369.
Sukhija A, Mahajan M, Joshi PC, Dsouza J, Seth NDN, Patil KH. Radiographic findings in COVID-19: Comparison between AI and radiologist. Indian J Radiol Imaging. 2021 Jan;31(Suppl 1):S87-S93. doi: 10.4103/ijri.IJRI_777_20. Epub 2021 Jan 23. PMID: 33814766; PMCID: PMC7996692.
Ma S, Li Y, Yin J, Niu Q, An Z, Du L, Li F, Gu J. Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance. Front Oncol. 2024 May 2;14:1374278. doi: 10.3389/fonc.2024.1374278. PMID: 38756651; PMCID: PMC11096442.
Kikuchi K, Togao O, Yamashita K, Momosaka D, Kikuchi Y, Kuga D, Yuhei S, Fujioka Y, Narutomi F, Obara M, Yoshimoto K, Ishigami K. Comparison of diagnostic performance of radiologist- and AI-based assessments of T2-FLAIR mismatch sign and quantitative assessment using synthetic MRI in the differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted. Neuroradiology. 2024 Mar;66(3):333-341. doi: 10.1007/s00234-024-03288-0. Epub 2024 Jan 15. PMID: 38224343; PMCID: PMC10859342.
Liu T. Grand Challenges in AI in Radiology. Front Radiol. 2021 Apr 13;1:629992. doi: 10.3389/fradi.2021.629992. PMID: 37492177; PMCID: PMC10364978.
Meijer, F.J.A. Managing expectations and challenges of AI in radiology. Eur Radiol 34, 7347–7348 (2024). https://doi.org/10.1007/s00330-024-10790-9
Debnath J. Radiology in the era of artificial intelligence (AI): Opportunities and challenges. Med J Armed Forces India. 2023 Jul-Aug;79(4):369-372. doi: 10.1016/j.mjafi.2023.05.003. Epub 2023 Jun 2. PMID: 37441285; PMCID: PMC10334252.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Karolina Zalewa, Joanna Olszak, Wojciech Kapłan, Dominika Orłowska, Lidia Bartoszek, Marta Kaus, Natalia Klepacz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 50
Number of citations: 0