Liquid biopsy - a review
DOI:
https://doi.org/10.12775/JEHS.2025.77.56584Keywords
Hepatocellular carcinoma, early-stage HCC, liquid biopsy, diagnosisAbstract
Introduction and objective:
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Early detection is crucial for better outcomes. Traditional diagnostic methods, such as imaging and biopsies, often fail to detect HCC in early stages. Liquid biopsy, based on circulating free DNA (cfDNA) analysis, offers a promising, non-invasive approach, allowing frequent testing, addressing tumor heterogeneity, and reducing costs.
Review methods:
This article's databases were accessed through the WHO website, PubMed, and Google Scholar.
A brief description of the state of knowledge:
Early detection of HCC significantly improves survival. Biomarkers from cfDNA, including DNA fragment patterns, methylation markers (e.g., USP44), 5-hydroxymethylcytosine (5hmC), and digital PCR analysis, have shown potential in early-stage detection. Advanced cfDNA fragmentomics identifies tumor-specific DNA fragmentation patterns. Techniques like DELFI demonstrate high sensitivity (94%) and specificity (98%). Machine learning enhances cfDNA analysis by integrating multiple markers, improving accuracy in distinguishing cancerous from precancerous states. Combining methylation analysis with machine learning further addresses challenges of tumor heterogeneity.
Summary:
Studies highlight the high sensitivity and specificity of cfDNA biomarkers for HCC diagnosis, especially in high-risk groups like individuals with cirrhosis. Integrating technologies like 5hmC analysis and machine learning enables early diagnosis and treatment monitoring. These advancements represent a transformative step in cancer diagnostics, offering effective tools to improve patient outcomes.
References
Renne SL, Sarcognato S, Sacchi D, Guido M, Roncalli M, Terracciano L, et al. Hepatocellular carcinoma: A clinical and pathological overview. Pathologica 2021;113:203. https://doi.org/10.32074/1591-951X-295.
[2] Global Hepatitis Report 2024 Action for Access in Low- and Middle-Income Countries. World Health Organization; 2024.
[3] 2024-cancer-facts-and-figures-acs n.d.
[4] Foglia B, Turato C, Cannito S. Hepatocellular Carcinoma: Latest Research in Pathogenesis, Detection and Treatment. Int J Mol Sci 2023;24. https://doi.org/10.3390/ijms241512224.
[5] Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res, vol. 149, Academic Press Inc.; 2021, p. 1–61. https://doi.org/10.1016/bs.acr.2020.10.001.
[6] Jarosław K, Krzysztof O, Adam J, Agnieszka M, Małgorzata P, Monika A, et al. The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 1223 (26.01.2017). 1223 Journal of Education 2017;7:2391–8306. https://doi.org/10.5281/zenodo.1045341.
[7] Song P, Gao J, Inagaki Y, Kokudo N, Hasegawa K, Sugawara Y, et al. Biomarkers: Evaluation of Screening for and Early Diagnosis of Hepatocellular Carcinoma in Japan and China. Liver Cancer 2013;2:31–9. https://doi.org/10.1159/000346220.
[8] Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol 2022;76:681–93. https://doi.org/10.1016/j.jhep.2021.11.018.
[9] Adeniji N, Dhanasekaran R. Genomic Landscape of HCC. Curr Hepatol Rep 2020;19:448–61. https://doi.org/10.1007/s11901-020-00553-7.
[10] Lehrich BM, Zhang J, Monga SP, Dhanasekaran R. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma. J Hepatol 2024;80:515–30. https://doi.org/10.1016/j.jhep.2023.11.030.
[11] Labgaa I, Villacorta-Martin C, D’avola D, Craig AJ, Von Felden J, Martins-Filho SN, et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene 2018;37:3740–52. https://doi.org/10.1038/s41388-018-0206-3.
[12] Moldogazieva NT, Zavadskiy SP, Terentiev AA. Genomic landscape of liquid biopsy for hepatocellular carcinoma personalized medicine. Cancer Genomics Proteomics 2021;18:369–83. https://doi.org/10.21873/CGP.20266.
[13] Yang C, Wu X, Chen S, Xiang B. Association between telomere length and hepatocellular carcinoma risk: A Mendelian randomization study. Cancer Med 2023;12:9937–44. https://doi.org/10.1002/cam4.5702.
[14] Buch S, Innes H, Lutz PL, Nischalke HD, Marquardt JU, Fischer J, et al. Genetic variation in TERT modifies the risk of hepatocellular carcinoma in alcohol-related cirrhosis: Results from a genome-wide case-control study. Gut 2023;72:381–91. https://doi.org/10.1136/gutjnl-2022-327196.
[15] Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and histological correlations in liver cancer. J Hepatol 2019;71:616–30. https://doi.org/10.1016/j.jhep.2019.06.001.
[16] Choi EJ, Kim YJ. Liquid biopsy for early detection and therapeutic monitoring of hepatocellular carcinoma. Journal of Liver Cancer 2022;22:103–14. https://doi.org/10.17998/jlc.2022.09.08.
[17] García-Pardo M, Makarem M, Li JJN, Kelly D, Leighl NB. Integrating circulating-free DNA (cfDNA) analysis into clinical practice: opportunities and challenges. Br J Cancer 2022;127:592–602. https://doi.org/10.1038/s41416-022-01776-9.
[18] Ao H, Xin Z, Jian Z. Liquid biopsy to identify biomarkers for immunotherapy in hepatocellular carcinoma. Biomark Res 2021;9. https://doi.org/10.1186/s40364-021-00348-y.
[19] Poulet G, Massias J, Taly V. Liquid Biopsy: General Concepts. Acta Cytol 2019;63:449–55. https://doi.org/10.1159/000499337.
[20] Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022;15. https://doi.org/10.1186/s13045-022-01351-y.
[21] Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022;21. https://doi.org/10.1186/s12943-022-01509-9.
[22] Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022;21. https://doi.org/10.1186/s12943-022-01543-7.
[23] Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology 2008;26:3213–21. https://doi.org/10.1200/JCO.2007.15.8923.
[24] Paoletti C, Muñiz MC, Thomas DG, Griffith KA, Kidwell KM, Tokudome N, et al. Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor-positive Breast Cancer. Clinical Cancer Research 2015;21:2487–98. https://doi.org/10.1158/1078-0432.CCR-14-1913.
[25] Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, et al. Fragment Length of Circulating Tumor DNA. PLoS Genet 2016;12. https://doi.org/10.1371/journal.pgen.1006162.
[26] Holm M, Andersson E, Osterlund E, Ovissi A, Soveri LM, Anttonen AK, et al. Detection of KRAS mutations in liquid biopsies from metastatic colorectal cancer patients using droplet digital PCR, Idylla, and next generation sequencing. PLoS One 2020;15. https://doi.org/10.1371/journal.pone.0239819.
[27] De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015;6. https://doi.org/10.1038/ncomms9839.
[28] Dobra G, Bukva M, Szabo Z, Bruszel B, Harmati M, Gyukity-Sebestyen E, et al. Small extracellular vesicles isolated from serum may serve as signal-enhancers for the monitoring of cns tumors. Int J Mol Sci 2020;21:1–20. https://doi.org/10.3390/ijms21155359.
[29] Quintana JF, Makepeace BL, Babayan SA, Ivens A, Pfarr KM, Blaxter M, et al. Extracellular Onchocerca-derived small RNAs in host nodules and blood. Parasit Vectors 2015;8. https://doi.org/10.1186/s13071-015-0656-1.
[30] Miranda KC, Bond DT, Levin JZ, Adiconis X, Sivachenko A, Russ C, et al. Massively parallel sequencing of human urinary exosome/microvesicle RNA reveals a predominance of non-coding RNA. PLoS One 2014;9. https://doi.org/10.1371/journal.pone.0096094.
[31] Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun JL, Lopez-Lopez R, Muinelo-Romay L, Suarez-Cunqueiro MM. Liquid biopsy in oral cancer. Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19061704.
[32] Deo P, Deshmukh R. Oral microbiome and oral cancer – The probable nexus. Journal of Oral and Maxillofacial Pathology 2020;24:361. https://doi.org/10.4103/jomfp.jomfp_20_20.
[33] Chen L, Abou-Alfa GK, Zheng B, Liu JF, Bai J, Du LT, et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients. Cell Res 2021;31:589–92. https://doi.org/10.1038/s41422-020-00457-7.
[34] Foda ZH, Annapragada A V., Boyapati K, Bruhm DC, Vulpescu NA, Medina JE, et al. Detecting Liver Cancer Using Cell-Free DNA Fragmentomes. Cancer Discov 2023;13:616–31. https://doi.org/10.1158/2159-8290.CD-22-0659.
[35] Nguyen VC, Nguyen TH, Phan TH, Tran THT, Pham TTT, Ho TD, et al. Fragment length profiles of cancer mutations enhance detection of circulating tumor DNA in patients with early-stage hepatocellular carcinoma. BMC Cancer 2023;23. https://doi.org/10.1186/s12885-023-10681-0.
[36] Kim SC, Kim J, Kim DW, Choi Y, Park K, Cho EJ, et al. Methylation-sensitive high-resolution melting analysis of the USP44 promoter can detect early-stage hepatocellular carcinoma in blood samples. BMB Rep 2022;55:553–8. https://doi.org/10.5483/BMBRep.2022.55.11.110.
[37] Cai Z, Zhang J, He Y, Xia L, Dong X, Chen G, et al. Liquid biopsy by combining 5-hydroxymethylcytosine signatures of plasma cell-free DNA and protein biomarkers for diagnosis and prognosis of hepatocellular carcinoma. ESMO Open 2021;6. https://doi.org/10.1016/j.esmoop.2020.100021.
[38] Wang J, Yang L, Diao Y, Liu J, Li J, Li R, et al. Circulating tumour DNA methylation in hepatocellular carcinoma diagnosis using digital droplet PCR. Journal of International Medical Research 2021;49. https://doi.org/10.1177/0300060521992962.
[39] Lee T, Rawding PA, Bu J, Hyun S, Rou W, Jeon H, et al. Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022;14. https://doi.org/10.3390/cancers14092061.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Weronika Rutkowska-Kawalec, Karolina Michalczuk, Dariusz Fabian, Marek Kurowski, Elżbieta Leszczyńska-Knaga, Natalia Jakubczyk, Paweł Moczydłowski, Monika Ryglewicz, Anna Gliwa, Karolina Kuczapska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 45
Number of citations: 0