Long-Term Health Effects of Artificially Colored Foods in Adults and Children: A Review of Scientific Literature on Attention Deficits, Carcinogenicity, and Allergy Risks
DOI:
https://doi.org/10.12775/JEHS.2024.76.56522Keywords
artificial colorants, diet, food coloring, synthetic colorants, food dyes, concentration deficit, concentration disorder, cancerogenesis, cancerous food additivesAbstract
The widespread use of artificial food colorants in processed foods has raised concerns regarding their long-term health effects, particularly in sensitive populations like children. This review evaluates current scientific literature on the potential health risks associated with synthetic food colorants, including attention deficits, carcinogenicity, and allergenic responses. Synthetic dyes, such as tartrazine (E102) and Brilliant Blue FCF (E133), are highly valued for their stability and vibrancy but have been linked to neurobehavioral and allergenic effects. Evidence suggests that azo dyes may induce hyperactivity, learning impairments, and allergic reactions, particularly in children and those with a genetic predisposition to sensitivities. In contrast, natural pigments like curcumin (E100), chlorophyllin (E140), and anthocyanins (E163) exhibit anti-inflammatory and antioxidant properties, supporting cardiovascular, cognitive, and cancer-preventive health benefits, though their stability in food applications presents a challenge. The review also highlights regulatory responses, such as the European Union’s mandatory labeling requirements, which aim to reduce synthetic dye exposure in high-risk groups. Given the adverse effects associated with synthetic colorants, there is an increasing shift toward natural alternatives. However, enhancing the bioavailability and stability of these natural compounds is essential for their broader adoption. This comprehensive analysis underscores the need for balanced, evidence-based regulation and consumer education to promote safer food colorant choices and supports ongoing research into functional food colorants that offer both aesthetic appeal and health benefits.
References
Rovina K, Siddiquee S, Shaarani SM. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E 102) in Foodstuffs. Crit Rev Anal Chem. 2017;47(4):309-324. doi:10.1080/10408347.2017.1287558
Dipalma JR. Tartrazine sensitivity. Am Fam Physician. 1990;42(5):1347-1350. PMID: 2239641
Gao Y, Li C, Shen J, Yin H, An X, Jin H. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved. J Food Sci. 2011;76(6). doi:10.1111/j.1750-3841.2011.02267.x
Ardern K. Tartrazine exclusion for allergic asthma. Cochrane Database Syst Rev. 2001;(4). doi:10.1002/14651858.CD000460.
Tanaka T. Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem Toxicol. 2006;44(2):179-187. doi:10.1016/j.fct.2005.06.011.
Kashanian S, Heidary Zeidali S. DNA binding studies of tartrazine food additive. DNA Cell Biol. 2011;30(7):499-505. doi:10.1089/dna.2010.1181
Khayyat L, Essawy A, Sorour J, Soffar A. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. PeerJ. 2017;5. doi:10.7717/peerj.3041
Amin KA, Abdel Hameid H, Abd Elsttar AH. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol. 2010;48(10):2994-2999. doi:10.1016/j.fct.2010.07.039
Tanaka T, Takahashi O, Oishi S, Ogata A. Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reprod Toxicol. 2008;26(2):156-163. doi:10.1016/j.reprotox.2008.07.001
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific opinion on re-evaluation of chlorophyllins (E 140(ii)) as food additives. EFSA J. 2015;13(5):4085. doi:10.2903/j.efsa.2015.4085
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific opinion on re-evaluation of copper complexes of chlorophylls (E 141(i)) and chlorophyllins (E 141(ii)) as food additives. EFSA J. 2015;13(6):4151. doi:10.2903/j.efsa.2015.4151
Guo JB, Wu H, Du LM, Fu Y. Determination of Brilliant Blue FCF in food and cosmetic samples by ionic liquid independent disperse liquid–liquid micro-extraction. Anal Methods. 2013;5(17):4527-4534. doi:10.1039/C3AY40362A
Bişgin AT. Simultaneous Extraction and Determination of Allura Red (E129) and Brilliant Blue FCF (E133) in Foodstuffs by Column Solid-Phase Spectrophotometry. J AOAC Int. Published online June 12, 2018. doi:10.5740/jaoacint.18-0073
Asif Ahmed M, Al-Khalifa AS, Al-Nouri DM, El-Din MFS. Dietary intake of artificial food color additives containing food products by school-going children. Saudi J Biol Sci. 2021;28(1):27-34. doi:10.1016/j.sjbs.2020.08.025
Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul Toxicol Pharmacol. 2015;73(3):914-922. doi:10.1016/j.yrtph.2015.09.026
Le J, Xiao X, Zhang D, et al. Neuroprotective Effects of an Edible Pigment Brilliant Blue FCF against Behavioral Abnormity in MCAO Rats. Pharmaceuticals (Basel). 2022;15(8):1018. Published 2022 Aug 18. doi:10.3390/ph15081018
Osumi M, Yamaguchi M, Sugimoto N, et al. Allergy to carminic acid: in vitro evidence of involvement of protein-binding hapten. Asia Pac Allergy. 2019;9(1):e2. Published 2019 Jan 14. doi:10.5415/apallergy.2019.9.e2
Ferreyra-Suarez D, Paredes-Vargas L, Jafari SM, García-Depraect O, Castro-Muñoz R. Extraction pathways and purification strategies towards carminic acid as natural-based food colorant: A comprehensive review. Adv Colloid Interface Sci. 2024;323:103052. doi:10.1016/j.cis.2023.103052
Li Q, Xu Q, Tan J, Hu L, Ge C, Xu M. Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY). 2021;13(7):10326-10353. doi:10.18632/aging.202794
Vollmuth TA. Caramel color safety - An update. Food Chem Toxicol. 2018;111:578-596. doi:10.1016/j.fct.2017.12.004
Hengel M, Shibamoto T. Carcinogenic 4(5)-methylimidazole found in beverages, sauces, and caramel colors: chemical properties, analysis, and biological activities. J Agric Food Chem. 2013;61(4):780-789. doi:10.1021/jf304855u
Jacobson MF. Carcinogenicity and regulation of caramel colorings. Int J Occup Environ Health. 2012;18(3):254-259. doi:10.1179/1077352512Z.00000000031
Smith TJ, Wolfson JA, Jiao D, et al. Caramel color in soft drinks and exposure to 4-methylimidazole: a quantitative risk assessment. PLoS One. 2015;10(2):e0118138. Published 2015 Feb 18. doi:10.1371/journal.pone.0118138
Sengar G, Sharma HK. Food caramels: a review. J Food Sci Technol. 2014;51(9):1686-1696. doi:10.1007/s13197-012-0633-z
Sultana S, Rahman MM, Aovi FI, et al. Food color additives in hazardous consequences of human health: An overview. Curr Top Med Chem. 2023;23(14):1380-1393. doi:10.2174/1568026623666230117122433
Buczkowska M, Paciorek K, Kapcińska A, Górski M. Caramel colors in terms of scientific research, with particular consideration of their toxicity. Postepy Hig Med Dosw (Online). 2021;75:429-442. doi:10.5604/01.3001.0014.8497
Rambler RM, Rinehart EM, Boehmler W, et al. A review of the association of blue food coloring with attention deficit hyperactivity disorder symptoms in children. Cureus. 2022;14(9). doi:10.7759/cureus.29241.
Folmer DE, Doell DL, Lee HS, Noonan GO, Carberry SE. A U.S. population dietary exposure assessment for 4-methylimidazole (4-MEI) from foods containing caramel colour and from formation of 4-MEI through the thermal treatment of food. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018;35(10):1890–1910. doi:10.1080/19440049.2018.1508892.
Potera C. The artificial food dye blues. Environ Health Perspect. 2010;118(10). doi:10.1289/ehp.118-a428.
Mannell WA, Grice HC. Chronic toxicity of brilliant blue FCF, blue VRS, and green S in rats. J Pharm Pharmacol. 1964;16(1):56–59. doi:10.1111/j.2042-7158.1964.tb07377.x.
Rambler RM, Rinehart EM, Boehmler W, et al. A review of the association of blue food coloring with attention deficit hyperactivity disorder symptoms in children. Cureus. 2022;14(9). doi:10.7759/cureus.29241.
Iscaro A, Mackay IR, O'Brien C. Lymphopenic effects on mice of a component of ammonia caramel, 2-acetyl-4(5)-tetrahydroxybutylimidazole (THI). Immunol Cell Biol. 1988;66(5):357-362. doi:10.1038/icb.1988.51.
Czech-Załubska K, Klich D, Jackowska-Tracz A, Didkowska A, Bogdan J, Anusz K. Dyes used in processed meat products in the Polish market, and their possible risks and benefits for consumer health. Foods. 2023;12(13):2610. doi:10.3390/foods12132610.
Mannell WA, Grice HC. Chronic toxicity of brilliant blue FCF, blue VRS, and green S in rats. J Pharm Pharmacol. 1964;16(1):56–59. doi:10.1111/j.2042-7158.1964.tb07377.x.
McGill CR. Coloring the truth: color additives in nutrition and health. Nutr Today. 2018;53(4):160–168. doi:10.1097/NT.0000000000000284.
Mehta N. Coloring the Truth: Color Additives in Nutrition and Health. Nutr Today. 2018;53(4):160-164. doi:10.1097/NT.0000000000000285.
Ates A, Kose C, Yilmaz I, Ergin K, Sari A, Yucel I. Anti-Angiogenic and Oxidative Effects of Brilliant Blue at Different Concentrations In Vitro. J Contemp Med Sci. 2023;13(7):275-282. doi:10.22317/jcms.v13i7.13706.
Alizadeh A, Khaki J, Kazemi S, et al. Sensors for Health Monitoring: Recent Advances and Practical Challenges. Sensors (Basel). 2023;23(3):1094. doi:10.3390/s23031094.
Hewahy M, Lofty A, Elgohary FK. The effects of dietary artificial colors on experimental rats. J Environ Sci. 2018;41(1):19-38. doi:10.21608/jes.2018.20366.
König J. Food colour additives of synthetic origin. In: Scotter MJ, ed. Colour Additives for Foods and Beverages. 1st ed. Woodhead Publishing; 2015:13-32. doi:10.1016/B978-1-78242-011-8.00002-7.
Garrido C, Clavijo E, Copaja S, Gómez-Jeria J, Campos-Vallette M. Vibrational and electronic spectroscopic detection and quantification of carminic acid in candies. Food Chem. 2019;286:192-198. doi:10.1016/j.foodchem.2018.12.123.
Kavieva L, Ziyatdinova G. Sensitive voltammetric quantification of carminic acid in candies using selenium dioxide nanoparticles-based electrode. Food Chem. 2022;373:132851. doi:10.1016/j.foodchem.2022.132851.
Upadhyay D, Jindal T, Tripathi A, Joshi KD, Shukla K. Impact of synthetic food colouring agents on aquatic ecosystems and human health. Uttar Pradesh J Zool. 2023;44(13):17-37. doi:10.56557/upjoz/2023/v44i133542
Kalt W, Cassidy A, Howard LR, et al. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv Nutr. 2020;11(2):224-236. doi:10.1093/advances/nmz065
Hair R, Sakaki JR, Chun OK. Anthocyanins, Microbiome and Health Benefits in Aging. Molecules. 2021;26(3):537. Published 2021 Jan 21. doi:10.3390/molecules26030537
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules. 2020;25(17):3809. Published 2020 Aug 21. doi:10.3390/molecules25173809
Li D, Wang P, Luo Y, Zhao M, Chen F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit Rev Food Sci Nutr. 2017;57(8):1729-1741. doi:10.1080/10408398.2015.1030064
Bendokas V, Skemiene K, Trumbeckaite S, et al. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr. 2020;60(19):3352-3365. doi:10.1080/10408398.2019.1687421
Sandoval-Ramírez BA, Catalán Ú, Llauradó E, et al. The health benefits of anthocyanins: an umbrella review of systematic reviews and meta-analyses of observational studies and controlled clinical trials. Nutr Rev. 2022;80(6):1515-1530. doi:10.1093/nutrit/nuab086
Krga I, Milenkovic D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J Agric Food Chem. 2019;67(7):1771-1783. doi:10.1021/acs.jafc.8b06737
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother Res. 2016;30(8):1265-1286. doi:10.1002/ptr.5642
Câmara JS, Locatelli M, Pereira JAM, et al. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients. 2022;14(23):5133. Published 2022 Dec 2. doi:10.3390/nu14235133
He J, Ye S, Correia P, et al. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf. 2022;21(4):3096-3128. doi:10.1111/1541-4337.12970
Li S, Wu B, Fu W, Reddivari L. The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. Int J Mol Sci. 2019;20(10):2588. Published 2019 May 27. doi:10.3390/ijms20102588
Kamal DAM, Salamt N, Yusuf ANM, Kashim MIAM, Mokhtar MH. Potential Health Benefits of Curcumin on Female Reproductive Disorders: A Review. Nutrients. 2021;13(9):3126. Published 2021 Sep 7. doi:10.3390/nu13093126
Liu S, Liu J, He L, et al. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. Molecules. 2022;27(14):4400. Published 2022 Jul 8. doi:10.3390/molecules27144400
Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH. Multiple health benefits of curcumin and its therapeutic potential. Environ Sci Pollut Res Int. 2022;29(29):43732-43744. doi:10.1007/s11356-022-20137-w
Yousefsani BS, Dadmehr M, Shirani K, Jamshidi A, Sathyapalan T, Sahebkar A. Health Benefits of Turmeric and Curcumin Against Food Contaminants. Adv Exp Med Biol. 2021;1328:171-197. doi:10.1007/978-3-030-73234-9_12
Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int J Mol Sci. 2023;24(10):8874. Published 2023 May 17. doi:10.3390/ijms24108874
Guest PC, Sahebkar A. Research in the Middle East into the Health Benefits of Curcumin. Adv Exp Med Biol. 2021;1291:1-13. doi:10.1007/978-3-030-56153-6_1
Porro C, Panaro MA. Recent Progress in Understanding the Health Benefits of Curcumin. Molecules. 2023;28(5):2418. Published 2023 Mar 6. doi:10.3390/molecules28052418
Izadi M, Sadri N, Abdi A, et al. Longevity and anti-aging effects of curcumin supplementation. Geroscience. 2024;46(3):2933-2950. doi:10.1007/s11357-024-01092-5
Pérez-Gálvez A, Viera I, Roca M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants (Basel). 2020;9(6):505. Published 2020 Jun 9. doi:10.3390/antiox9060505
Nagini S, Palitti F, Natarajan AT. Chemopreventive potential of chlorophyllin: a review of the mechanisms of action and molecular targets. Nutr Cancer. 2015;67(2):203-211. doi:10.1080/01635581.2015.990573
Ozcan M, Aydemir D, Bacanlı M, Anlar HG, Ulusu NN, Aksoy Y. Protective Effects of Antioxidant Chlorophyllin in Chemically Induced Breast Cancer Model In vivo. Biol Trace Elem Res. 2021;199(12):4475-4488. doi:10.1007/s12011-021-02585-6
Zheng H, You Y, Hua M, et al. Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Front Physiol. 2018;9:1671. Published 2018 Dec 4. doi:10.3389/fphys.2018.01671
Esatbeyoglu T, Wagner AE, Schini-Kerth VB, Rimbach G. Betanin--a food colorant with biological activity. Mol Nutr Food Res. 2015;59(1):36-47. doi:10.1002/mnfr.201400484
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules. 2021;26(9):2520. Published 2021 Apr 26. doi:10.3390/molecules26092520
Wang Y, Fernando GSN, Sergeeva NN, et al. Uptake and Immunomodulatory Properties of Betanin, Vulgaxanthin I and Indicaxanthin towards Caco-2 Intestinal Cells. Antioxidants (Basel). 2022;11(8):1627. Published 2022 Aug 22. doi:10.3390/antiox11081627
Rahimi P, Abedimanesh S, Mesbah-Namin SA, Ostadrahimi A. Betalains, the nature-inspired pigments, in health and diseases. Crit Rev Food Sci Nutr. 2019;59(18):2949-2978. doi:10.1080/10408398.2018.1479830
Calvi P, Terzo S, Amato A. Betalains: colours for human health. Nat Prod Res. 2023;37(10):1746-1765. doi:10.1080/14786419.2022.2106481
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J Agric Food Chem. 2020;68(42):11595-11611. doi:10.1021/acs.jafc.0c04241
Milton-Laskibar I, Martínez JA, Portillo MP. Current Knowledge on Beetroot Bioactive Compounds: Role of Nitrate and Betalains in Health and Disease. Foods. 2021;10(6):1314. Published 2021 Jun 7. doi:10.3390/foods10061314
Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys. 2018;652:18-26. doi:10.1016/j.abb.2018.06.001
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr. 2023;14(2):238-255. doi:10.1016/j.advnut.2022.10.007
Bungau S, Abdel-Daim MM, Tit DM, et al. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid Med Cell Longev. 2019;2019:9783429. Published 2019 Feb 12. doi:10.1155/2019/9783429
Stachowiak B, Szulc P. Astaxanthin for the Food Industry. Molecules. 2021;26(9):2666. Published 2021 May 2. doi:10.3390/molecules26092666
Rodriguez-Concepcion M, Avalos J, Bonet ML, et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res. 2018;70:62-93. doi:10.1016/j.plipres.2018.04.004
Chuyen HV, Eun JB. Marine carotenoids: Bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr. 2017;57(12):2600-2610. doi:10.1080/10408398.2015.1063477
Olson JA. Benefits and liabilities of vitamin A and carotenoids. J Nutr. 1996;126(4 Suppl):1208S-12S. doi:10.1093/jn/126.suppl_4.1208S
Abdel-Aal el-SM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013;5(4):1169-1185. Published 2013 Apr 9. doi:10.3390/nu5041169
Bernstein PS, Li B, Vachali PP, et al. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34-66. doi:10.1016/j.preteyeres.2015.10.003
Bjørklund G, Gasmi A, Lenchyk L, et al. The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules. 2022;27(21):7167. Published 2022 Oct 23. doi:10.3390/molecules27217167
Xavier AA, Pérez-Gálvez A. Carotenoids as a Source of Antioxidants in the Diet. Subcell Biochem. 2016;79:359-375. doi:10.1007/978-3-319-39126-7_14
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zuzanna Martyna Ambroziewicz, Robert Siemiątkowski, Michał Łata, Szymon Dowgiert, Małgorzata Sikorska, Jakub Kamiński, Katarzyna Więcław, Hanna Grabowska, Joanna Chruściel, Gabriela Mąsior
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 135
Number of citations: 0