FKBP5 gene - current knowledge, new approach and possible biomarker function: a narrative review
DOI:
https://doi.org/10.12775/JEHS.2024.75.56217Keywords
FKBP5 gene, stress-related disorders, biomarkers, HPA axis, long-term stressAbstract
Introduction
Over the past few decades, the level of interest in the use of complex molecular pathways in the course of various diseases has increased significantly. Despite the rapid development of medicine, the potential and role of FKBP5 as a biomarker has not yet been fully characterized, although current studies are promising.
Material and methods of research: The literature included in the PubMed databases is searched through the words such as FKBP5 gene, stress-related disorders, biomarkers.
Aim of the study
The aim of this paper is to provide a comprehensive review of the current state of knowledge regarding the characteristics, current use in diagnosis or treatment of various diseases and to determine the possible function of the biomarker for the FKBP5 gene.
Description of the state of knowledge
FKBP5 participates in the regulation of the HPA axis and thus in the stress response. This translates into the course of many diseases, but the exact mechanism of action has not been unequivocally confirmed in previous studies on all conditions involving FKBP5.
Conclusions
In general, FKBP5 has a huge diagnostic and therapeutic potential in many disease entities. FKBP5 may act as a biomarker. However, further studies are needed to clarify the current observations and to search for further implications in the pathogenesis or diagnostic and therapeutic procedures in the course of various diseases.
References
Hähle A, Merz S, Meyners C, Hausch F. The Many Faces of FKBP51. Biomolecules. 2019;9(1):35. Published 2019 Jan 21. doi:10.3390/biom9010035
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem. Published online February 13, 2023. doi:10.1002/jcb.30374
Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology. 2016;41(1):261-274. doi:10.1038/npp.2015.235
Matosin N, Halldorsdottir T, Binder EB. Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model. Biol Psychiatry. 2018;83(10):821-830. doi:10.1016/j.biopsych.2018.01.021
Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009;34 Suppl 1:S186-S195. doi:10.1016/j.psyneuen.2009.05.021
Wiederrecht G, Hung S, Chan HK, et al. Characterization of high molecular weight FK-506 binding activities reveals a novel FK-506-binding protein as well as a protein complex. J Biol Chem. 1992;267(30):21753-21760.
Schiene-Fischer C, Yu C. Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett. 2001;495(1-2):1-6. doi:10.1016/s0014-5793(01)02326-2
Pratt WB. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem. 1993;268(29):21455-21458.
Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005;280(6):4609-4616. doi:10.1074/jbc.M407498200
Scammell JG, Denny WB, Valentine DL, Smith DF. Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol. 2001;124(2):152-165. doi:10.1006/gcen.2001.7696
Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc Natl Acad Sci U S A. 2003;100(3):868-873. doi:10.1073/pnas.0231020100
Häusl AS, Balsevich G, Gassen NC, Schmidt MV. Focus on FKBP51: A molecular link between stress and metabolic disorders. Mol Metab. 2019;29:170-181. doi:10.1016/j.molmet.2019.09.003
Weiwad M, Edlich F, Kilka S, et al. Comparative analysis of calcineurin inhibition by complexes of immunosuppressive drugs with human FK506 binding proteins. Biochemistry. 2006;45(51):15776-15784. doi:10.1021/bi061616p
Wen H, He Y, Tang Y, et al. Altered immune response is associated with sex difference in vulnerability to Alzheimer's disease in human prefrontal cortex. Brain Pathol. Published online November 4, 2024. doi:10.1111/bpa.13318
Hawn SE, Sheerin CM, Lind MJ, et al. GxE effects of FKBP5 and traumatic life events on PTSD: A meta-analysis. J Affect Disord. 2019;243:455-462. doi:10.1016/j.jad.2018.09.058
Fan B, Ma J, Zhang H, et al. Association of FKBP5 gene variants with depression susceptibility: A comprehensive meta-analysis. Asia Pac Psychiatry. 2021;13(2):e12464. doi:10.1111/appy.12464
Malekpour M, Shekouh D, Safavinia ME, et al. Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: an opportunity for drug discovery. Front Psychiatry. 2023;14:1182345. Published 2023 Jun 16. doi:10.3389/fpsyt.2023.1182345
Zhang Y, Yue W, Li J. The association of FKBP5 gene polymorphism with genetic susceptibility to depression and response to antidepressant treatment- a systematic review. BMC Psychiatry. 2024;24(1):274. Published 2024 Apr 12. doi:10.1186/s12888-024-05717-z
Birtolo MF, Armignacco R, Benanteur N, et al. Whole blood transcriptomic signature of Cushing's syndrome. Eur J Endocrinol. 2024;191(1):55-63. doi:10.1093/ejendo/lvae083
Zhang Y, Deng Y, Zhou M, Wu B, Zhou J. Intraglandular dissemination: a special pathological feature. Front Oncol. 2024;14:1428274. Published 2024 Jul 29. doi:10.3389/fonc.2024.1428274
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med. 2024;72(1):128-138. doi:10.1177/10815589231207793
Ndiaye M, Diop G, Derbois C, et al. Gene expression profiling of peripheral blood mononuclear cells from women with cervical lesions reveals new markers of cancer. Oncol Rep. 2023;49(6):118. doi:10.3892/or.2023.8555
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells. 2024;13(10):801. Published 2024 May 8. doi:10.3390/cells13100801
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. doi:10.1016/S0140-6736(20)32205-4
Ferretti MT, Iulita MF, Cavedo E, et al. Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol. 2018;14(8):457-469. doi:10.1038/s41582-018-0032-9
Lopez-Lee C, Torres ERS, Carling G, Gan L. Mechanisms of sex differences in Alzheimer's disease. Neuron. 2024;112(8):1208-1221. doi:10.1016/j.neuron.2024.01.024
Blair LJ, Nordhues BA, Hill SE, et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest. 2013;123(10):4158-4169. doi:10.1172/JCI69003
Zannas AS. Molecular integrators of stress and aging: the example of FKBP5. Acta Neuropathol. 2023;145(6):713-715. doi:10.1007/s00401-023-02572-2
Castro-Vale I, van Rossum EF, Machado JC, Mota-Cardoso R, Carvalho D. Genetics of glucocorticoid regulation and posttraumatic stress disorder--What do we know?. Neurosci Biobehav Rev. 2016;63:143-157. doi:10.1016/j.neubiorev.2016.02.005
Kohrt BA, Worthman CM, Ressler KJ, et al. Cross-cultural gene- environment interactions in depression, post-traumatic stress disorder, and the cortisol awakening response: FKBP5 polymorphisms and childhood trauma in South Asia. Int Rev Psychiatry. 2015;27(3):180-196. doi:10.3109/09540261.2015.1020052
Klengel T, Mehta D, Anacker C, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16(1):33-41. doi:10.1038/nn.3275
Wang Q, Shelton RC, Dwivedi Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis. J Affect Disord. 2018;225:422-428. doi:10.1016/j.jad.2017.08.066
Clark SL, Hattab MW, Chan RF, et al. A methylation study of long-term depression risk. Mol Psychiatry. 2020;25(6):1334-1343. doi:10.1038/s41380-019-0516-z
Zhdanava M, Pilon D, Ghelerter I, et al. The Prevalence and National Burden of Treatment-Resistant Depression and Major Depressive Disorder in the United States. J Clin Psychiatry. 2021;82(2):20m13699. Published 2021 Mar 16. doi:10.4088/JCP.20m13699
Gharraee B, Zahedi Tajrishi K, Sheybani F, et al. Prevalence of major depressive disorder in the general population of Iran: A systematic review and meta-analysis. Med J Islam Repub Iran. 2019;33:151. Published 2019 Dec 25. doi:10.34171/mjiri.33.151
Kraus C, Kadriu B, Lanzenberger R, Zarate CA Jr, Kasper S. Prognosis and improved outcomes in major depression: a review. Transl Psychiatry. 2019;9(1):127. Published 2019 Apr 3. doi:10.1038/s41398-019-0460-3
Bialek K, Czarny P, Strycharz J, Sliwinski T. Major depressive disorders accompanying autoimmune diseases - Response to treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109678. doi:10.1016/j.pnpbp.2019.109678
Lozupone M, Panza F. Social determinants of late-life depression epigenetics. Epigenomics. 2020;12(7):559-562. doi:10.2217/epi-2019-0392
Watanuki T, Funato H, Uchida S, et al. Increased expression of splicing factor SRp20 mRNA in bipolar disorder patients. J Affect Disord. 2008;110(1-2):62-69. doi:10.1016/j.jad.2008.01.003
Cherian K, Schatzberg AF, Keller J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophr Res. 2019;213:72-79. doi:10.1016/j.schres.2019.07.003
Farrell C, Doolin K, O' Leary N, et al. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res. 2018;265:341-348. doi:10.1016/j.psychres.2018.04.064
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord. 2014;164:33-37. doi:10.1016/j.jad.2014.04.002
Fabbri C, Corponi F, Albani D, et al. Pleiotropic genes in psychiatry: Calcium channels and the stress-related FKBP5 gene in antidepressant resistance. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:203-210. doi:10.1016/j.pnpbp.2017.10.005
Lekman M, Laje G, Charney D, et al. The FKBP5-gene in depression and treatment response--an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 2008;63(12):1103-1110. doi:10.1016/j.biopsych.2007.10.026
Kirchheiner J, Lorch R, Lebedeva E, et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics. 2008;9(7):841-846. doi:10.2217/14622416.9.7.841
Singh AB, Bousman CA. Antidepressant Pharmacogenetics. Am J Psychiatry. 2017;174(5):417-418. doi:10.1176/appi.ajp.2017.17020173
Lett TA, Walter H, Brandl EJ. Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs. 2016;30(12):1169-1189. doi:10.1007/s40263-016-0385-9
Kwon A, Kim S, Jeon H, Lee HS, Lee SH. Influence of FKBP5 Variants and Childhood Trauma on Brain Volume in Non-clinical Individuals. Front Behav Neurosci. 2021;15:663052. Published 2021 Jun 3. doi:10.3389/fnbeh.2021.663052
Pérez-Ortiz JM, García-Gutiérrez MS, Navarrete F, Giner S, Manzanares J. Gene and protein alterations of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims. Psychoneuroendocrinology. 2013;38(8):1251-1258. doi:10.1016/j.psyneuen.2012.11.008
Bremner JD, Vythilingam M, Vermetten E, et al. Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. Psychoneuroendocrinology. 2003;28(6):733-750. doi:10.1016/s0306-4530(02)00067-7
Roberts S, Keers R, Breen G, et al. DNA methylation of FKBP5 and response to exposure-based psychological therapy. Am J Med Genet B Neuropsychiatr Genet. 2019;180(2):150-158. doi:10.1002/ajmg.b.32650
Bailus BJ, Scheeler SM, Simons J, et al. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy. 2021;17(12):4119-4140. doi:10.1080/15548627.2021.1904489
Schreiber KH, Ortiz D, Academia EC, Anies AC, Liao CY, Kennedy BK. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14(2):265-273. doi:10.1111/acel.12313
Bauder M, Meyners C, Purder PL, et al. Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors. J Med Chem. 2021;64(6):3320-3349. doi:10.1021/acs.jmedchem.0c02195
Hadamitzky M, Herring A, Kirchhof J, et al. Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. Int J Neuropsychopharmacol. 2018;21(6):592-602. doi:10.1093/ijnp/pyy017
Hadamitzky M, Herring A, Keyvani K, et al. Acute systemic rapamycin induces neurobehavioral alterations in rats. Behav Brain Res. 2014;273:16-22. doi:10.1016/j.bbr.2014.06.056
Bevilacqua L, Carli V, Sarchiapone M, et al. Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Arch Gen Psychiatry. 2012;69(1):62-70. doi:10.1001/archgenpsychiatry.2011.152
Wei K, Xu Y, Zhao Z, et al. Icariin alters the expression of glucocorticoid receptor, FKBP5 and SGK1 in rat brains following exposure to chronic mild stress. Int J Mol Med. 2016;38(1):337-344. doi:10.3892/ijmm.2016.2591
Maruf AA, Greenslade A, Arnold PD, Bousman C. Antidepressant pharmacogenetics in children and young adults: A systematic review. J Affect Disord. 2019;254:98-108. doi:10.1016/j.jad.2019.05.025
Zobel A, Schuhmacher A, Jessen F, et al. DNA sequence variants of the FKBP5 gene are associated with unipolar depression. Int J Neuropsychopharmacol. 2010;13(5):649-660. doi:10.1017/S1461145709991155
Laje G, Perlis RH, Rush AJ, McMahon FJ. Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv. 2009;60(11):1446-1457. doi:10.1176/appi.ps.60.11.1446
Frampton JE, Plosker GL. Duloxetine: a review of its use in the treatment of major depressive disorder. CNS Drugs. 2007;21(7):581-609. doi:10.2165/00023210-200721070-00004
Skogh E, Reis M, Dahl ML, Lundmark J, Bengtsson F. Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther Drug Monit. 2002;24(4):518-526. doi:10.1097/00007691-200208000-00010
Berger M, Kraeuter AK, Romanik D, Malouf P, Amminger GP, Sarnyai Z. Cortisol awakening response in patients with psychosis: Systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;68:157-166. doi:10.1016/j.neubiorev.2016.05.027
Mitjans M, Catalán R, Vázquez M, et al. Hypothalamic-pituitary-adrenal system, neurotrophic factors and clozapine response: association with FKBP5 and NTRK2 genes. Pharmacogenet Genomics. 2015;25(5):274-277. doi:10.1097/FPC.0000000000000132
Pariante CM. Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci. 2009;1179:144-152. doi:10.1111/j.1749-6632.2009.04978.x
Xu J, Wang R, Liu Y, et al. Short- and long-term alterations of FKBP5-GR and specific microRNAs in the prefrontal cortex and hippocampus of male rats induced by adolescent stress contribute to depression susceptibility. Psychoneuroendocrinology. 2019;101:204-215. doi:10.1016/j.psyneuen.2018.11.008
van Alem CMA, Schmidbauer M, Rong S, et al. Liposomal Delivery Improves the Efficacy of Prednisolone to Attenuate Renal Inflammation in a Mouse Model of Acute Renal Allograft Rejection. Transplantation. 2020;104(4):744-753. doi:10.1097/TP.0000000000003060
Juszczak A, Morris D, Grossman A. Cushing’s Syndrome. In: Feingold KR, Anawalt B, Blackman MR, et al., eds. Endotext. South Dartmouth (MA): MDText.com, Inc.; September 5, 2024.
Hakami OA, Ahmed S, Karavitaki N. Epidemiology and mortality of Cushing's syndrome. Best Pract Res Clin Endocrinol Metab. 2021;35(1):101521. doi:10.1016/j.beem.2021.101521
Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing's syndrome. Lancet. 2015;386(9996):913-927. doi:10.1016/S0140-6736(14)61375-1
Braun LT, Vogel F, Reincke M. Long-term morbidity and mortality in patients with Cushing's syndrome. J Neuroendocrinol. 2022;34(8):e13113. doi:10.1111/jne.13113
Bride MM, Crespo I, Webb SM, Valassi E. Quality of life in Cushing's syndrome. Best Pract Res Clin Endocrinol Metab. 2021;35(1):101505. doi:10.1016/j.beem.2021.101505
Bali U, Phillips T, Hunt H, Unitt J. FKBP5 mRNA Expression Is a Biomarker for GR Antagonism. J Clin Endocrinol Metab. 2016;101(11):4305-4312. doi:10.1210/jc.2016-1624
Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology. 2000;141(11):4107-4113. doi:10.1210/endo.141.11.7785
Gao Z, Yu F, Jia H, Ye Z, Yao S. FK506-binding protein 5 promotes the progression of papillary thyroid carcinoma. J Int Med Res. 2021;49(4):3000605211008325. doi:10.1177/03000605211008325
Mao S, Zhang D, Chen L, et al. FKBP51 promotes invasion and migration by increasing the autophagic degradation of TIMP3 in clear cell renal cell carcinoma. Cell Death Dis. 2021;12(10):899. Published 2021 Oct 1. doi:10.1038/s41419-021-04192-8
Periyasamy S, Hinds T Jr, Shemshedini L, Shou W, Sanchez ER. FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene. 2010;29(11):1691-1701. doi:10.1038/onc.2009.458
Wang RG, Zhang D, Zhao CH, Wang QL, Qu H, He QS. FKBP10 functioned as a cancer-promoting factor mediates cell proliferation, invasion, and migration via regulating PI3K signaling pathway in stomach adenocarcinoma. Kaohsiung J Med Sci. 2020;36(5):311-317. doi:10.1002/kjm2.12174
Dornan J, Taylor P, Walkinshaw MD. Structures of immunophilins and their ligand complexes. Curr Top Med Chem. 2003;3(12):1392-1409. doi:10.2174/1568026033451899
Marrone L, D'Agostino M, Giordano C, et al. Scaffold proteins of cancer signaling networks: The paradigm of FK506 binding protein 51 (FKBP51) supporting tumor intrinsic properties and immune escape. Oncol Res. 2023;31(4):423-436. Published 2023 Jun 27. doi:10.32604/or.2023.028392
Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988;242(4878):540-546. doi:10.1126/science.3140380
Kirkman MS, Briscoe VJ, Clark N, et al. Diabetes in older adults. Diabetes Care. 2012;35(12):2650-2664. doi:10.2337/dc12-1801
Panagiotou C, Lambadiari V, Maratou E, et al. Insufficient glucocorticoid receptor signaling and flattened salivary cortisol profile are associated with metabolic and inflammatory indices in type 2 diabetes. J Endocrinol Invest. 2021;44(1):37-48. doi:10.1007/s40618-020-01260-2
de Wilde J, Smit E, Mohren R, et al. An 8-week high-fat diet induces obesity and insulin resistance with small changes in the muscle transcriptome of C57BL/6J mice. J Nutrigenet Nutrigenomics. 2009;2(6):280-291. doi:10.1159/000308466
Willmer T, Goedecke JH, Dias S, Louw J, Pheiffer C. DNA methylation of FKBP5 in South African women: associations with obesity and insulin resistance. Clin Epigenetics. 2020;12(1):141. Published 2020 Sep 21. doi:10.1186/s13148-020-00932-3
Vitale I, Pietrocola F, Guilbaud E, et al. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ. 2023;30(5):1097-1154. doi:10.1038/s41418-023-01153-w
Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292(5522):1728-1731. doi:10.1126/science.292.5522.1728
Stechschulte LA, Qiu B, Warrier M, et al. FKBP51 Null Mice Are Resistant to Diet-Induced Obesity and the PPARγ Agonist Rosiglitazone. Endocrinology. 2016;157(10):3888-3900. doi:10.1210/en.2015-1996
Smedlund KB, Sanchez ER, Hinds TD Jr. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab. 2021;32(11):862-874. doi:10.1016/j.tem.2021.08.003
Balsevich G, Häusl AS, Meyer CW, et al. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun. 2017;8(1):1725. Published 2017 Nov 23. doi:10.1038/s41467-017-01783-y
Jubb AW, Boyle S, Hume DA, Bickmore WA. Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci. Cell Rep. 2017;21(11):3022-3031. doi:10.1016/j.celrep.2017.11.053
Yang Y, Babayan L, Mirzakhanian A, et al. Circulating FK506 binding protein 51 mRNA expression in patients with pituitary adenomas. Heliyon. 2023;9(1):e12678. Published 2023 Jan 4. doi:10.1016/j.heliyon.2022.e12678
Bancos I, Hatipoglu BA, Yuen KCJ, Chandramohan L, Chaudhari S, Moraitis AG. Evaluation of FKBP5 as a cortisol activity biomarker in patients with ACTH-dependent Cushing syndrome. J Clin Transl Endocrinol. 2021;24:100256. Published 2021 Jun 6. doi:10.1016/j.jcte.2021.100256
Fiaz T, Nadeem MS, Afzal O, et al. Peripheral mRNA Expression and Prognostic Significance of Emotional Stress Biomarkers in Metastatic Breast Cancer Patients. Int J Mol Sci. 2022;23(22):14097. Published 2022 Nov 15. doi:10.3390/ijms232214097
Tong F, Lu G, Zang J, et al. FKBP5 associated CD8 T cell infiltration is a novel prognostic biomarker in luminal B breast cancer. J Int Med Res. 2023;51(11):3000605231211771. doi:10.1177/03000605231211771
Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovasc Disord. 2021;21(1):329. Published 2021 Jul 4. doi:10.1186/s12872-021-02146-8
Wei Y, Cao H, Peng YY, Zhang B. Alterated gene expression in dilated cardiomyopathy after left ventricular assist device support by bioinformatics analysis. Front Cardiovasc Med. 2023;10:1013057. Published 2023 Mar 17. doi:10.3389/fcvm.2023.1013057
Lafta MS, Sokolov AV, Landtblom AM, Ericson H, Schiöth HB, Abu Hamdeh S. Exploring biomarkers in trigeminal neuralgia patients operated with microvascular decompression: A comparison with multiple sclerosis patients and non-neurological controls. Eur J Pain. 2024;28(6):929-942. doi:10.1002/ejp.2231
Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319-1325. doi:10.1038/ng1479
Yeo S, Enoch MA, Gorodetsky E, et al. The influence of FKBP5 genotype on expression of FKBP5 and other glucocorticoid-regulated genes, dependent on trauma exposure. Genes Brain Behav. 2017;16(2):223-232. doi:10.1111/gbb.12342
Kang HJ, Yoon S, Lee S, et al. FKBP5-associated miRNA signature as a putative biomarker for PTSD in recently traumatized individuals. Sci Rep. 2020;10(1):3353. Published 2020 Feb 25. doi:10.1038/s41598-020-60334-6
Hori H, Yoshida F, Ishida I, et al. Blood mRNA expression levels of glucocorticoid receptors and FKBP5 are associated with depressive disorder and altered HPA axis. J Affect Disord. 2024;349:244-253. doi:10.1016/j.jad.2024.01.080
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sven Solisch, Agata Boczar, Patryk Dryja, Bianka Solisch, Jakub Jarmołowicz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 46
Number of citations: 0