The Role of Inflammatory Pathways in the Development of Rosacea
DOI:
https://doi.org/10.12775/JEHS.2024.71.56142Keywords
rosacea, inflammatory pathways, immune response, toll-like receptors (TLRs), UV radiationAbstract
Rosacea is a prevalent yet poorly understood chronic inflammatory skin condition, characterized by symptoms such as flushing, erythema, papules, and telangiectasia. Although the precise causes of rosacea remain unclear, its pathogenesis involves complex interactions between genetic, environmental, microbial, and immune factors. Recent studies highlight a crucial role for both the innate and adaptive immune systems, implicating Toll-like receptors, neutrophils, macrophages, and cytokines as central to the inflammatory cascade seen in rosacea. Additionally, the overexpression of molecules like cathelicidin and vascular endothelial growth factor (VEGF) contributes to the disease's hallmark features, such as vasodilation and angiogenesis. Trigger factors including UV radiation, dietary components, and microbial influences further exacerbate inflammation, underscoring the multi-factorial nature of the condition. Traditional treatment options, like topical metronidazole, azelaic acid, and oral tetracyclines, have demonstrated efficacy in controlling mild to moderate cases of rosacea. However, more severe cases remain challenging to treat, prompting exploration into novel therapies like IL-17 inhibitors, laser therapy, and probiotics. This review investigates the inflammatory pathways central to rosacea pathogenesis and evaluates emerging therapeutic approaches aimed at addressing the underlying mechanisms of this condition. Understanding these pathways may lead to more effective treatment strategies, improving patient outcomes and quality of life.
References
Steinhoff M, Schauber J, Leyden JJ. New insights into rosacea pathophysiology: a review of recent findings. Journal of the American Academy of Dermatology. 2013 Dec 1;69(6):S15-26.
Yamasaki K, Gallo RL. The molecular pathology of rosacea. Journal of dermatological science. 2009 Aug 1;55(2):77-81.
van Zuuren EJ. Rosacea. New England Journal of Medicine. 2017 Nov 2;377(18):1754-64.
Van Onselen J. Rosacea: symptoms and support. British Journal of Nursing. 2012 Nov 22;21(21):1252-5.
Gether L, Overgaard LK, Egeberg A, Thyssen JP. Incidence and prevalence of rosacea: a systematic review and meta‐analysis. British Journal of Dermatology. 2018 Aug 1;179(2):282-9.
Alexis AF, Callender VD, Baldwin HE, Desai SR, Rendon MI, Taylor SC. Global epidemiology and clinical spectrum of rosacea, highlighting skin of color: review and clinical practice experience. Journal of the American Academy of Dermatology. 2019 Jun 1;80(6):1722-9.
Abokwidir M, Feldman SR. Rosacea management. Skin appendage disorders. 2016 May 18;2(1-2):26-34.
Buddenkotte, Joerg, and Martin Steinhoff. "Recent advances in understanding and managing rosacea." F1000Research 7 (2018).
Johnson SM, Berg A, Barr C. Managing Rosacea in the clinic: from pathophysiology to treatment—a review of the literature. The Journal of Clinical and Aesthetic Dermatology. 2020 Apr;13(4 Suppl 1):S17.
Weiss E, Katta R. Diet and rosacea: the role of dietary change in the management of rosacea. Dermatology practical & conceptual. 2017 Oct;7(4):31.
Fisher GW, Travers JB, Rohan CA. Rosacea pathogenesis and therapeutics: current treatments and a look at future targets. Frontiers in Medicine. 2023 Dec 13;10:1292722.
Hu XM, Li ZX, Zhang DY, Yang YC, Zheng SY, Zhang Q, Wan XX, Li J, Yang RH, Xiong K. Current research and clinical trends in rosacea pathogenesis. Heliyon. 2022 Oct 1;8(10).
Mehrholz DM, Nowicki R, Barańska-Rybak WM. Infectious factors in the etiopathogenesis of rosacea. Dermatology Review. 2016 Jul 1;103(4).
Aldrich N, Gerstenblith M, Fu P, Tuttle MS, Varma P, Gotow E, Cooper KD, Mann M, Popkin DL. Genetic vs environmental factors that correlate with rosacea: a cohort-based survey of twins. JAMA dermatology. 2015 Nov 1;151(11):1213-9.
Chang AL, Raber I, Xu J, Li R, Spitale R, Chen J, Kiefer AK, Tian C, Eriksson NK, Hinds DA, Tung JY. Assessment of the genetic basis of rosacea by genome-wide association study. Journal of Investigative Dermatology. 2015 Jun 1;135(6):1548-55.
Del Rosso JQ. Update on rosacea pathogenesis and correlation with medical therapeutic agents. CUTIS-NEW YORK-. 2006 Aug 1;78(2):97.
Steinhoff M, Schauber J, Leyden JJ. New insights into rosacea pathophysiology: a review of recent findings. Journal of the American Academy of Dermatology. 2013 Dec 1;69(6):S15-26.
Yamasaki K. Rosacea in skin innate immunity. In: Immunology of the Skin: Basic and Clinical Sciences in Skin Immune Responses. 2016. p. 451-62.
Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc. 2011 Dec;15(1):12-5.
Buhl T, Sulk M, Nowak P, Buddenkotte J, McDonald I, Aubert J, et al. Molecular and morphological characterization of inflammatory infiltrate in rosacea reveals activation of Th1/Th17 pathways. J Investig Dermatol. 2015;135(9):2198-208.
Zhao Z, Liu T, Liang Y, Cui W, Li D, Zhang G, et al. N2-polarized neutrophils reduce inflammation in rosacea by regulating vascular factors and proliferation of CD4+ T cells. J Investig Dermatol. 2022;142(7):1835-44.
Liu Y, Zhou Y, Chu C, Jiang X. The role of macrophages in rosacea: implications for targeted therapies. Front Immunol. 2023;14:1211953.
Holmes AD, Steinhoff M. Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics. Exp Dermatol. 2017;26(8):659-67.
Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, et al. Cutaneous injury induces the release of cathelicidin antimicrobial peptides active against group A Streptococcus. J Investig Dermatol. 2001;117(1):91-7.
Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews Immunology . 2009 Aug 1 [cited 2020 Oct 1];9(8):535–42.
Deng Z, Chen M, Liu Y, Xu S, Ouyang Y, Shi W, et al. A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea. EMBO Molecular Medicine. 2021 Mar 18;
Huang Y, Liu D, Chen M, Xu S, Peng Q, Zhu Y, et al. TLR7 promotes skin inflammation via activating NFκB-mTORC1 axis in rosacea. PeerJ. 2023 Sep 26 [cited 2024 Nov 6];11:e15976.
Hayran Y, Lay I, Mocan MC, Bozduman T, Ersoy-Evans S. Vascular endothelial growth factor gene polymorphisms in patients with rosacea: A case-control study. Journal of the American Academy of Dermatology [Internet]. 2019 Jun 8;81(2):348–54.
Rodrigues-Braz D, Zhao M, Nilufer Yesilirmak, Selim Aractingi, Behar-Cohen F, Jean-Louis Bourges. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Molecular Vision [Internet]. 2021 May 13;27:323.
Ahn CS, Huang WW. Rosacea Pathogenesis. Dermatologic Clinics. 2018 Apr;36(2):81–6.
Morgado‐Carrasco D, Granger C, Trullas C, Piquero‐Casals J. Impact of ultraviolet radiation and exposome on rosacea: Key role of photoprotection in optimizing treatment. Journal of Cosmetic Dermatology. 2021 Mar 4;20(11).
Alinia H, Tuchayi SM, Patel NU, Patel N, Awosika O, Bahrami N, et al. Rosacea Triggers. Dermatologic Clinics. 2018 Apr;36(2):123–6.
Woo Y, Lim J, Cho D, Park H. Rosacea: Molecular Mechanisms and Management of a Chronic Cutaneous Inflammatory Condition. International Journal of Molecular Sciences. 2016 Sep 15;17(9):1562.
Barczak I, Bondos B, Kochan R, Barczuk P, Bara S, Dzięgielewski J, Bączek K, Barć J, Gałajda E, Antonik J. Current views on pathogenesis of rosacea. J Educ Health Sport [Internet]. 2023 Jul. 18 [cited 2024 Nov. 6];18(1):109-22.
Salzer S, Kresse S, Hirai Y, Koglin S, Reinholz M, Ruzicka T, et al. Cathelicidin peptide LL-37 increases UVB-triggered inflammasome activation: Possible implications for rosacea. Journal of Dermatological Science. 2014 Dec;76(3):173–9.
Marson JW, Baldwin HE. Rosacea: a wholistic review and update from pathogenesis to diagnosis and therapy. International Journal of Dermatology. 2019 Dec 27;59(6).
Placek W, Wolska H. Rosacea – new data on pathogenesis and treatment. Dermatology Review. 2016;5:387–99.
Daou H, Paradiso M, Hennessy K, Seminario-Vidal L. Rosacea and the Microbiome: A Systematic Review. Dermatology and Therapy. 2020 Nov 10;11(1):1–12.
Wang FY, Chi CC. Rosacea, Germs, and Bowels: A Review on Gastrointestinal Comorbidities and Gut–Skin Axis of Rosacea. Advances in Therapy. 2021 Jan 28;
Searle T, Ali FR, Carolides S, Firas Al-Niaimi. Rosacea and Diet: What is New in 2021? The Journal of Clinical and Aesthetic Dermatology. 2021 Dec;14(12):49.
New Survey Pinpoints Leading Factors that Trigger Symptoms | Rosacea.org . www.rosacea.org.
Alia E, Feng H. Rosacea pathogenesis, common triggers, and dietary role: The cause, the trigger, and the positive effects of different foods. Clinics in Dermatology. 2021 Oct;40(2).
Nations U. Marine litter, an analytical overview. Uneporg . 2022 [cited 2022 Jul 28]
Amir Ali A, Vender R, Vender R. The role of IL-17 in papulopustular rosacea and future directions. J Cutan Med Surg. 2019;23(6):635-41.
Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13:975-80.
Feldman SR, Huang WW, Huynh TT. Current drug therapies for rosacea: a chronic vascular and inflammatory skin disease. J Manag Care Pharm. 2014;20(6):623-9.
Narayanan S, Hünerbein A, Getie M, Jäckel A, Neubert RH. Scavenging properties of metronidazole on free oxygen radicals in a skin lipid model system. J Pharm Pharmacol. 2007;59:1125-30. doi: 10.1211/jpp.59.8.0010.
Hayran Y, Şen O, Fırat Oğuz E, Yücel Ç, Eren F, Külcü Çakmak S, et al. Serum IL‐17 levels in patients with rosacea. J Cosmet Dermatol. 2022;21(3):1147-53.
Sharma A, Kroumpouzos G, Kassir M, Galadari H, Goren A, Grabbe S, et al. Rosacea management: a comprehensive review. J Cosmet Dermatol. 2022;21(5):1895-904.
Korting HC, Schöllmann C. Current topical and systemic approaches to treatment of rosacea. J Eur Acad Dermatol Venereol. 2009;23(8):876-82.
van Zuuren EJ, Fedorowicz Z, Tan J, van der Linden MM, Arents BW, Carter B, et al. Interventions for rosacea based on the phenotype approach: an updated systematic review including GRADE assessments. Br J Dermatol. 2019;181(1):65-79.
Zhang Y, Jiang S, Lu Y, Yan W, Yan H, Xu Y, et al. A decade retrospective study of light/laser devices in treating nasal rosacea. J Dermatol Treat. 2020.
Bennardo L, Patruno C, Zappia E, Tamburi F, Sannino M, Negosanti F, et al. Combination of specific vascular lasers and vascular intense pulsed light improves facial telangiectasias and redness. Medicina. 2022;58(5):651.
Liu J, Zhou BR, Wu D, Xu Y, Luo D. Sequential delivery of intense pulsed light and long-pulse 1.064-nm neodymium-doped yttrium aluminum garnet laser shows better effect in the treatment of facial telangiectasias than using them separately. G Ital Dermatol Venereol. 2016;152(1):1-7.
Sánchez-Pellicer P, Eguren-Michelena C, García-Gavín J, Llamas-Velasco M, Navarro-Moratalla L, Núñez-Delegido E, et al. Rosacea, microbiome and probiotics: The gut-skin axis. Front Microbiol. 2024;14:1323644.
Manzhalii E, Hornuss D, Stremmel W. Intestinal-borne dermatoses significantly improved by oral application of Escherichia coli Nissle 1917. World J Gastroenterol. 2016;22(23):5415.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamila Sieradocha, Wiktoria Jedlikowska, Natalia Furlepa
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 135
Number of citations: 0