The Impact of GLP-1 Agonists on Depression Treatment: A Literature Review
DOI:
https://doi.org/10.12775/JEHS.2024.69.55353Keywords
GLP-1, diabetes, depression, systematic reviewAbstract
Introduction
Depression is increasingly recognized as a major global health issue, driven by neurobiological, genetic, and environmental factors. Despite extensive research, understanding depression remains challenging due to its complexity and the lack of biomarkers. Recent studies highlight a link between depression and metabolic disturbances, emphasizing the need for alternative therapeutic approaches.
Purpose
This review aims to explore the therapeutic potential of GLP-1 (glucagon-like peptide-1) in treating depression, focusing on its impact on neurogenesis, neuroinflammation, neurotransmitter imbalances, and synaptic dysfunction.
Materials and Methods
A systematic review was conducted by analyzing literature from databases such as PubMed and Google Scholar, covering studies from 2003 to 2024. The review focused on keywords related to GLP-1, depression, and diabetes.
Description of the State of Knowledge
This section discusses the neurobiological mechanisms of depression, including neuroinflammation, neurotransmitter imbalances, and impaired neurogenesis. It highlights the potential of GLP-1 agonists to address these issues and improve mood and cognitive function.
Conclusion
The review concludes that GLP-1 holds promise as a therapeutic target for depression. Beyond its metabolic roles, GLP-1 can influence brain regions involved in mood regulation, enhance neurogenesis, reduce neuroinflammation, and improve neurotransmitter balance. These effects suggest that GLP-1-based therapies could offer new treatment options for depression, potentially improving outcomes beyond traditional antidepressants.
References
Ledford H. Medical research: if depression were cancer. Nature. 2014;515(7526). doi:10.1038/515182a
Kessler RC, Wai TC, Demler O, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6). doi:10.1001/archpsyc.62.6.617
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215). doi:10.1038/nature07455
Setoyama D, Kato TA, Hashimoto R, et al. Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients-a multicenter pilot analysis. PLoS One. 2016;11(12). doi:10.1371/journal.pone.0165267
Akimoto H, Tezuka K, Nishida Y, Nakayama T, Takahashi Y, Asai S. Association between use of oral hypoglycemic agents in Japanese patients with type 2 diabetes mellitus and risk of depression: A retrospective cohort study. Pharmacol Res Perspect. 2019;7(6). doi:10.1002/prp2.536
Kim YK, Kim OY, Song J. Alleviation of Depression by Glucagon-Like Peptide 1 Through the Regulation of Neuroinflammation, Neurotransmitters, Neurogenesis, and Synaptic Function. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.01270
Laurindo LF, Barbalho SM, Guiguer EL, et al. GLP-1a: Going beyond Traditional Use. Int J Mol Sci. 2022;23(2):739. doi:10.3390/ijms23020739
Semenkovich K, Brown ME, Svrakic DM, Lustman PJ. Depression in type 2 diabetes mellitus: Prevalence, impact, and treatment. Drugs. 2015;75(6). doi:10.1007/s40265-015-0347-4
Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Reports. 2021;73(4):1020-1032. doi:10.1007/s43440-021-00274-8
Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology. 2016;65:54-66. doi:10.1016/j.psyneuen.2015.11.021
Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. doi:10.1016/J.MOLMET.2019.09.010
Ma Q, Wang L, Liu XX, et al. GLP-1 plays a protective role in hippocampal neuronal cells by activating cAMP-CREB-BDNF signaling pathway against CORT+HG-induced toxicity. Heliyon. 2023;9(8):e18491. doi:10.1016/j.heliyon.2023.e18491
Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: A review of clinical and experimental evidence. J Neuroinflammation. 2013;10. doi:10.1186/1742-2094-10-142
Felger JC, Treadway MT. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology. 2017;42(1). doi:10.1038/npp.2016.143
Serafini G. Neuroplasticity and major depression, the role of modern antidepressant drugs. World J Psychiatry. 2012;2(3). doi:10.5498/wjp.v2.i3.49
Drevets WC, Savitz J, Trimble M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2008;13(8). doi:10.1017/S1092852900013754
Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1). doi:10.1038/npp.2009.104
Van Der Heijden RA, Bijzet J, Meijers WC, et al. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis. Sci Rep. 2015;5. doi:10.1038/srep16474
Miller AH, Raison CL. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1). doi:10.1038/nri.2015.5
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1). doi:10.1038/nrn2297
Howren MB, Lamkin DM, Suls J. Associations of depression with c-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom Med. 2009;71(2). doi:10.1097/PSY.0b013e3181907c1b
Uttara B, Singh A, Zamboni P, Mahajan R. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr Neuropharmacol. 2009;7(1). doi:10.2174/157015909787602823
Andreazza AC, Kauer-Sant’Anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: A meta-analysis. J Affect Disord. 2008;111(2-3). doi:10.1016/j.jad.2008.04.013
Hoelscher C. Potential Role of Glucagon-Like Peptide-1 (GLP-1) in Neuroprotection. CNS Drugs. 2012;26(10).
During MJ, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9(9). doi:10.1038/nm919
Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4). doi:10.1038/nrneurol.2010.17
Mcclean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(17). doi:10.1523/JNEUROSCI.0529-11.2011
Belzung C. Innovative drugs to treat depression: Did animal models fail to be predictive or did clinical trials fail to detect effects. Neuropsychopharmacology. 2014;39(5). doi:10.1038/npp.2013.342
Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5). doi:10.1016/j.tins.2013.01.005
Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab. 2016;5(9). doi:10.1016/j.molmet.2016.05.011
Tanti A, Belzung C. Neurogenesis along the septo-temporal axis of the hippocampus: Are depression and the action of antidepressants region-specific? Neuroscience. 2013;252. doi:10.1016/j.neuroscience.2013.08.017
Filiou MD, Sandi C. Anxiety and Brain Mitochondria: A Bidirectional Crosstalk. Trends Neurosci. 2019;42(9). doi:10.1016/j.tins.2019.07.002
Zhu XH, Yan HC, Zhang J, et al. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci. 2010;30(38). doi:10.1523/JNEUROSCI.6414-09.2010
Hamilton A, Hölscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport. 2009;20(13). doi:10.1097/WNR.0b013e32832fbf14
Kashiwaya Y, Bergman C, Lee JH, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(6). doi:10.1016/j.neurobiolaging.2012.11.023
Dienel GA. Brain glucose metabolism: Integration of energetics with function. Physiol Rev. 2019;99(1). doi:10.1152/physrev.00062.2017
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006;110(2). doi:10.1016/j.pharmthera.2005.11.006
Belmaker RH, Agam G. Major Depressive Disorder-belmaker. N Engl J Med. 2008;1(358).
Blier P, El-Mansari M. Serotonin and beyond: Therapeutics for major depression. Philos Trans R Soc B Biol Sci. 2013;368(1615). doi:10.1098/rstb.2012.0536
Albert PR. Why is depression more prevalent in women? J Psychiatry Neurosci. 2015;40(4). doi:10.1503/jpn.150205
Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci. 2008;12(1). doi:10.1016/j.tics.2007.10.011
Duman RS, Aghajanian GK. Synaptic dysfunction in depression: Potential therapeutic targets. Science (80- ). 2012;338(6103). doi:10.1126/science.1222939
Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. In: Neuropharmacology. Vol 62. ; 2012. doi:10.1016/j.neuropharm.2011.07.036
Block W, Träber F, Von Widdern O, et al. Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: Correlates and predictors of treatment response. Int J Neuropsychopharmacol. 2009;12(3). doi:10.1017/S1461145708009516
McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology. 2016;41(1). doi:10.1038/npp.2015.171
Duman RS, Monteggia LM. A Neurotrophic Model for Stress-Related Mood Disorders. Biol Psychiatry. 2006;59(12). doi:10.1016/j.biopsych.2006.02.013
Krishnan V, Nestler EJ. Linking molecules to mood: New insight into the biology of depression. Am J Psychiatry. 2010;167(11). doi:10.1176/appi.ajp.2009.10030434
Bath KG, Schilit A, Lee FS. Stress effects on BDNF expression: Effects of age, sex, and form of stress. Neuroscience. 2013;239. doi:10.1016/j.neuroscience.2013.01.074
Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Mol Brain Res. 2005;136(1-2). doi:10.1016/j.molbrainres.2004.12.020
Sen S, Duman R, Sanacora G. Serum Brain-Derived Neurotrophic Factor, Depression, and Antidepressant Medications: Meta-Analyses and Implications. Biol Psychiatry. 2008;64(6). doi:10.1016/j.biopsych.2008.05.005
Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014;8(DEC). doi:10.3389/fncel.2014.00430
Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2). doi:10.1124/pr.111.005108
Arnsten AFT, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4). doi:10.1016/j.jaac.2012.01.008
Molteni R, Calabrese F, Cattaneo A, et al. Acute stress responsiveness of the neurotrophin bdnf in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology. 2009;34(6). doi:10.1038/npp.2008.208
Alvarez E, Martínez MD, Roncero I, et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem. 2005;92(4). doi:10.1111/j.1471-4159.2004.02914.x
Egecioglu E, Engel JA, Jerlhag E. The Glucagon-Like Peptide 1 Analogue, Exendin-4, Attenuates the Rewarding Properties of Psychostimulant Drugs in Mice. PLoS One. 2013;8(7). doi:10.1371/journal.pone.0069010
Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008;14(4). doi:10.1016/j.molmed.2008.01.003
Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol. 2012;166(5). doi:10.1111/j.1476-5381.2012.01971.x
Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3). doi:10.1038/nm.4050
Willner P, Scheel-Krüger J, Belzung C. The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev. 2013;37(10). doi:10.1016/j.neubiorev.2012.12.007
Rajkowska G, Miguel-Hidalgo J. Gliogenesis and Glial Pathology in Depression. CNS Neurol Disord - Drug Targets. 2008;6(3). doi:10.2174/187152707780619326
Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002;12(4). doi:10.1093/cercor/12.4.386
Joca SRL, Ferreira FR, Guimarães FS. Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress. 2007;10(3). doi:10.1080/10253890701223130
Willner P. Reliability of the chronic mild stress model of depression: A user survey. Neurobiol Stress. 2017;6. doi:10.1016/j.ynstr.2016.08.001
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm. 2019;126(11). doi:10.1007/s00702-019-02084-y
Vialou V, Bagot RC, Cahill ME, et al. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: Role of ΔFosB. J Neurosci. 2014;34(11). doi:10.1523/JNEUROSCI.1787-13.2014
McEwen BS. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress. 2017;1. doi:10.1177/2470547017692328
Kang HJ, Voleti B, Hajszan T, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18(9). doi:10.1038/nm.2886
Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs: Glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry. 2013;73(12). doi:10.1016/j.biopsych.2013.03.032
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology. 2008;33(1). doi:10.1038/sj.npp.1301574
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther. 2015;148. doi:10.1016/j.pharmthera.2014.11.016
Bradley CA, Peineau S, Taghibiglou C, et al. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci. 2012;(JANUARY 2012). doi:10.3389/fnmol.2012.00013
Sandi C, Haller J. Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nat Rev Neurosci. 2015;16(5). doi:10.1038/nrn3918
Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10(6). doi:10.1038/nrn2632
Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science (80- ). 2010;329(5994). doi:10.1126/science.1190287
Duman RS. Ketamine and rapid-acting antidepressants: A new era in the battle against depression and suicide. F1000Research. 2018;7. doi:10.12688/f1000research.14344.1
Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63(5). doi:10.1001/archpsyc.63.5.530
Jorm AF. Is depression a risk factor for dementia or cognitive decline? Gerontology. 2000;46(4). doi:10.1159/000022163
J. S, P.J. B, D. S, C. R. Antidepressant treatment of geriatric depression with executive dysfunction and other cognitive impairments. Am J Geriatr Psychiatry. 2012;20(3 SUPPL. 1).
Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev Neurol. 2011;7(6). doi:10.1038/nrneurol.2011.60
Du M, Liu J, Chen Z, et al. Brain grey matter volume alterations in late-life depression. J Psychiatry Neurosci. 2014;39(6). doi:10.1503/jpn.130275
Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J Diabetes Investig. 2013;4(2). doi:10.1111/jdi.12065
Lau J, Bloch P, Schäffer L, et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem. 2015;58(18). doi:10.1021/acs.jmedchem.5b00726
Kosaraju J, Murthy V, Khatwal RB, et al. Vildagliptin: An anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J Pharm Pharmacol. 2013;65(12). doi:10.1111/jphp.12148
Perry TA, Lahiri DK, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res. 2003;72(5). doi:10.1002/jnr.10611
Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis. 2019;9(1). doi:10.3233/JPD-181503
Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol. 2013;218(1). doi:10.1530/JOE-12-0521
Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res. 2008;86(2). doi:10.1002/jnr.21483
Isacson R, Nielsen E, Dannaeus K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol. 2011;650(1). doi:10.1016/j.ejphar.2010.10.008
Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol. 2009;202(3). doi:10.1677/JOE-09-0132
Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82. doi:10.1016/j.jpsychires.2016.07.019
Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10). doi:10.1038/nrn3346
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress. 2017;7. doi:10.1016/j.ynstr.2017.03.001
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6). doi:10.1038/mp.2016.44
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5). doi:10.1038/nrgastro.2009.35
Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: Paradigm shift in neuroscience. J Neurosci. 2014;34(46). doi:10.1523/JNEUROSCI.3299-14.2014
Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48. doi:10.1016/j.bbi.2015.03.016
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38. doi:10.1016/j.bbi.2013.12.015
Aizawa E, Tsuji H, Asahara T, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202. doi:10.1016/j.jad.2016.05.038
Bravo JA, Forsythe P, Chew M V., et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38). doi:10.1073/pnas.1102999108
Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4). doi:10.1016/j.neuroscience.2010.08.005
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9(OCT). doi:10.3389/fncel.2015.00392
Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102. doi:10.1016/j.neubiorev.2019.03.023
Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11). doi:10.1007/s00125-007-0791-0
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22). doi:10.1073/pnas.1219451110
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2).
Reigstad CS, Salmonson CE, Rainey JF, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4). doi:10.1096/fj.14-259598
Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil. 2013;25(9). doi:10.1111/nmo.12153
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415). doi:10.1038/nature11550
Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: How gut microbes shape human behavior. J Psychiatr Res. 2015;63. doi:10.1016/j.jpsychires.2015.02.021
Bravo JA, Julio-Pieper M, Forsythe P, et al. Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol. 2012;12(6). doi:10.1016/j.coph.2012.09.010
Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7). doi:10.1016/j.cell.2013.11.024
Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol. 2014;817. doi:10.1007/978-1-4939-0897-4_5
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends Neurosci. 2016;39(11). doi:10.1016/j.tins.2016.09.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paulina Lemieszek, Katarzyna Rudnicka, Ilona Sajkiewicz, Nadia Miga-Orczykowska, Ilona Jasiuk, Justyna Wójtowicz, Martyna Pustelniak, Katarzyna Krukar, Ewa Łukaszewska, Klaudia Kister, Kamil Chrościński, Jakub Laskowski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 55
Number of citations: 0