Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Targeted Cancer Therapy: The Role of Liposomes in Oncology. A Literature Review
  • Home
  • /
  • Targeted Cancer Therapy: The Role of Liposomes in Oncology. A Literature Review
  1. Home /
  2. Archives /
  3. Vol. 69 (2024) /
  4. Medical Sciences

Targeted Cancer Therapy: The Role of Liposomes in Oncology. A Literature Review

Authors

  • Katarzyna Rudnicka Stefan Wyszyński Provincial Specialist Hospital in Lublin https://orcid.org/0009-0005-6815-6276
  • Paulina Lemieszek Stefan Wyszyński Provincial Specialist Hospital in Lublin https://orcid.org/0009-0001-6648-7283
  • Katarzyna Krukar Provincial Combined Hospital in Kielce https://orcid.org/0009-0001-5544-8027
  • Martyna Pustelniak https://orcid.org/0009-0000-5606-0385
  • Nadia Miga-Orczykowska Stefan Wyszyński Provincial Specialist Hospital in Lublin https://orcid.org/0009-0001-6648-7283
  • Ilona Sajkiewicz Stefan Wyszyński Provincial Specialist Hospital in Lublin https://orcid.org/0009-0007-5954-3594
  • Justyna Wójtowicz Stefan Wyszyński Provincial Specialist Hospital in Lublin https://orcid.org/0009-0006-6079-9637
  • Ilona Jasiuk Independent Public Clinical Hospital No. 1 in Lublin, https://orcid.org/0009-0009-8544-3276
  • Ewa Łukaszewska VOXEL NZOZ MCD https://orcid.org/0009-0000-6065-7213
  • Klaudia Kister 1st Clinic of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin https://orcid.org/0000-0003-2058-5395

DOI:

https://doi.org/10.12775/JEHS.2024.69.55349

Keywords

Liposomes, nanoparticle, cancer, chemotherapy review

Abstract

Liposomal formulations represent a significant advancement in the field of oncology, providing innovative solutions for the delivery of chemotherapeutic agents. These nanoscale carriers, made of phospholipid bilayers, enhance drug stability and allow for targeted delivery to tumor tissues, thereby improving the therapeutic index of anticancer medications. By altering the pharmacokinetics and biodistribution of these drugs, liposomes help reduce systemic side effects while increasing the concentration of therapeutic agents at the tumor site. Recent developments in liposomal technology have led to the creation of targeted liposomes, which can bind specifically to cancer cells, enhancing treatment accuracy. This review examines the various applications of liposomes in cancer treatment, discusses important clinical trials, identifies challenges in formulation and delivery, and considers future directions for integrating liposomal therapies into routine oncology practice. As ongoing research progresses, liposomes are poised to play a crucial role in advancing cancer treatment strategies and improving patient outcomes. Additionally, we discuss the challenges associated with their clinical translation and future perspectives in optimizing liposome formulations for personalized cancer therapies.

References

CLAUDINO WM, BIGANZOLI L. Cancer: Principles and Practice of Oncology. Eur J Cancer Care (Engl). 2007;16(1). doi:10.1111/j.1365-2354.2006.00680.x

Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 2012;9(3). doi:10.7150/ijms.3635

Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53. doi:10.1146/annurev.med.53.082901.103929

Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1). doi:10.1038/nrc1529

Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050). doi:10.1038/nature03794

Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010;10(9). doi:10.1021/nl102184c

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12). doi:10.1038/nnano.2007.387

Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev. 2016;116(4). doi:10.1021/acs.chemrev.5b00346

Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 2012;64(SUPPL.). doi:10.1016/j.addr.2012.09.016

Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2). doi:10.1038/nrd1632

Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9). doi:10.1038/nrc1958

Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3). doi:10.1016/j.jconrel.2007.12.017

Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132(3). doi:10.1016/j.jconrel.2008.05.003

Nie S. Editorial: Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine. 2010;5(4). doi:10.2217/nnm.10.23

Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release. 2011;153(3). doi:10.1016/j.jconrel.2011.06.001

Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9). doi:10.1038/nrd2614

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3). doi:10.3322/caac.21660

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5). doi:10.1016/j.cell.2011.02.013

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11). doi:10.1038/nm.3394

Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9). doi:10.1038/nrc.2016.73

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7). doi:10.1038/nrclinonc.2016.217

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4). doi:10.1038/nrc3239

Vaupel P, Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2). doi:10.1007/s10555-007-9055-1

Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6). doi:10.1038/nrc3064

Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12). doi:10.15252/embr.201439246

Overall CM, López-Otín C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat Rev Cancer. 2002;2(9). doi:10.1038/nrc884

Wan C, Allen TM, Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res. 2014;4(1). doi:10.1007/s13346-013-0161-z

Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin Pharmacokinet. 2003;42(5). doi:10.2165/00003088-200342050-00002

Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science (80- ). Published online 2004. doi:10.1126/science.1095833

Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. Published online 2006.

Chander A, Chen XL, Naidu DG, et al. Subject index. Miner Eng. Published online 2015.

Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J. Published online 2012. doi:10.1208/s12248-012-9330-0

Amphipathic Weak Base Loading into Preformed Liposomes Having a Transmembrane Ammonium Ion Gradient: From the Bench to Approved Doxil. In: Liposome Technology. ; 2020. doi:10.1201/9780849397271-5

Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. Published online 2008. doi:10.1002/jps.21358

Barenholz Y (Chezy). Doxil® — The First FDA-Approved Nano-Drug: From an Idea to a Product. In: Handbook of Harnessing Biomaterials in Nanomedicine. ; 2020. doi:10.1201/9781003125259-16

Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. Published online 2013. doi:10.1016/j.addr.2012.09.037

Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. Published online 2005. doi:10.1038/nrd1632

Gabizon A, Amitay Y, Tzemach D, Gorin J, Shmeeda H, Zalipsky S. Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: Studies with human gastro-entero-pancreatic ectopic tumor models. J Control Release. Published online 2012. doi:10.1016/j.jconrel.2011.11.019

Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. Published online 2013. doi:10.1016/j.addr.2012.10.002

Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. Published online 2010. doi:10.1038/nrclinonc.2010.139

Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. Published online 2011. doi:10.1016/j.addr.2010.04.009

Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces. Published online 2014. doi:10.1021/am5036225

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. Published online 2000. doi:10.1016/S0168-3659(99)00248-5

Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. Published online 2016. doi:10.1038/natrevmats.2016.14

Parmar K, Patel J, Pathak Y. Factors affecting the clearance and biodistribution of polymeric nanoparticles. In: Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems. ; 2022. doi:10.1007/978-3-030-83395-4_14

Torchilin VP. Passive and active drug targeting: Drug delivery to tumors as an example. Handb Exp Pharmacol. Published online 2010. doi:10.1007/978-3-642-00477-3_1

Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. Published online 2010. doi:10.1016/j.jconrel.2010.08.027

Presant CA, Blayney D, Kennedy P, et al. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet. Published online 1990. doi:10.1016/0140-6736(90)91188-G

Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. Published online 2007. doi:10.1208/aapsj0902015

Szebeni J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology. Published online 2005. doi:10.1016/j.tox.2005.07.023

Puri A. Phototriggerable liposomes: Current research and future perspectives. Pharmaceutics. Published online 2014. doi:10.3390/pharmaceutics6010001

Zhao Z, Wang W, Wang G, et al. Dual peptides-modified cationic liposomes for enhanced Lung cancer gene therapy by a gap junction regulating strategy. J Nanobiotechnology. Published online 2023. doi:10.1186/s12951-023-02242-1

Kenchegowda M, Rahamathulla M, Hani U, et al. Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules. Published online 2022. doi:10.3390/molecules27010146

Whitehead KA, Dahlman JE, Langer RS, Anderson DG. Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng. Published online 2011. doi:10.1146/annurev-chembioeng-061010-114133

Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. Published online 2009. doi:10.1021/cr800409e

Al-Dosari MS, Gao X. Nonviral gene delivery: Principle, limitations, and recent Progress. AAPS J. Published online 2009. doi:10.1208/s12248-009-9143-y

S.L. M, N. F, P.A. S, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. Published online 2014.

Zhang Y, Li S, Wang Y, et al. A novel and efficient CD22 CAR-T therapy induced a robust antitumor effect in relapsed/refractory leukemia patients when combined with CD19 CAR-T treatment as a sequential therapy. Exp Hematol Oncol. Published online 2022. doi:10.1186/s40164-022-00270-5

Cho YS, Do HM, Lee SJ, Hemmi S, Joo YE, Jung C. Abstract 3739: Efficacy of CD46-mediated Ad5/35 chimeric adenoviral gene therapy in colorectal cancers. Cancer Res. Published online 2016. doi:10.1158/1538-7445.am2016-3739

Wang C, Pan C, Yong H, et al. Emerging non-viral vectors for gene delivery. J Nanobiotechnology. Published online 2023. doi:10.1186/s12951-023-02044-5

La-Beck NM, Gabizon AA. Nanoparticle interactions with the immune system: Clinical implications for liposome-based cancer chemotherapy. Front Immunol. Published online 2017. doi:10.3389/fimmu.2017.00416

Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood - Brain barrier using MRI-guided focused ultrasound. J Control Release. Published online 2014. doi:10.1016/j.jconrel.2014.06.031

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. Published online 2015. doi:10.3389/fphar.2015.00286

Downloads

  • PDF

Published

2024-10-02

How to Cite

1.
RUDNICKA, Katarzyna, LEMIESZEK, Paulina, KRUKAR, Katarzyna, PUSTELNIAK, Martyna, MIGA-ORCZYKOWSKA, Nadia, SAJKIEWICZ, Ilona, WÓJTOWICZ, Justyna, JASIUK, Ilona, ŁUKASZEWSKA, Ewa and KISTER, Klaudia. Targeted Cancer Therapy: The Role of Liposomes in Oncology. A Literature Review. Journal of Education, Health and Sport. Online. 2 October 2024. Vol. 69, p. 55349. [Accessed 28 June 2025]. DOI 10.12775/JEHS.2024.69.55349.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 69 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Katarzyna Rudnicka, Paulina Lemieszek, Katarzyna Krukar, Martyna Pustelniak, Nadia Miga-Orczykowska, Ilona Sajkiewicz, Justyna Wójtowicz, Ilona Jasiuk, Ewa Łukaszewska, Klaudia Kister

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 158
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Liposomes, nanoparticle, cancer, chemotherapy review
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop