Targeted Cancer Therapy: The Role of Liposomes in Oncology. A Literature Review
DOI:
https://doi.org/10.12775/JEHS.2024.69.55349Keywords
Liposomes, nanoparticle, cancer, chemotherapy reviewAbstract
Liposomal formulations represent a significant advancement in the field of oncology, providing innovative solutions for the delivery of chemotherapeutic agents. These nanoscale carriers, made of phospholipid bilayers, enhance drug stability and allow for targeted delivery to tumor tissues, thereby improving the therapeutic index of anticancer medications. By altering the pharmacokinetics and biodistribution of these drugs, liposomes help reduce systemic side effects while increasing the concentration of therapeutic agents at the tumor site. Recent developments in liposomal technology have led to the creation of targeted liposomes, which can bind specifically to cancer cells, enhancing treatment accuracy. This review examines the various applications of liposomes in cancer treatment, discusses important clinical trials, identifies challenges in formulation and delivery, and considers future directions for integrating liposomal therapies into routine oncology practice. As ongoing research progresses, liposomes are poised to play a crucial role in advancing cancer treatment strategies and improving patient outcomes. Additionally, we discuss the challenges associated with their clinical translation and future perspectives in optimizing liposome formulations for personalized cancer therapies.
References
CLAUDINO WM, BIGANZOLI L. Cancer: Principles and Practice of Oncology. Eur J Cancer Care (Engl). 2007;16(1). doi:10.1111/j.1365-2354.2006.00680.x
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 2012;9(3). doi:10.7150/ijms.3635
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53. doi:10.1146/annurev.med.53.082901.103929
Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1). doi:10.1038/nrc1529
Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050). doi:10.1038/nature03794
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010;10(9). doi:10.1021/nl102184c
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12). doi:10.1038/nnano.2007.387
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev. 2016;116(4). doi:10.1021/acs.chemrev.5b00346
Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 2012;64(SUPPL.). doi:10.1016/j.addr.2012.09.016
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2). doi:10.1038/nrd1632
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9). doi:10.1038/nrc1958
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3). doi:10.1016/j.jconrel.2007.12.017
Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132(3). doi:10.1016/j.jconrel.2008.05.003
Nie S. Editorial: Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine. 2010;5(4). doi:10.2217/nnm.10.23
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release. 2011;153(3). doi:10.1016/j.jconrel.2011.06.001
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9). doi:10.1038/nrd2614
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3). doi:10.3322/caac.21660
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5). doi:10.1016/j.cell.2011.02.013
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11). doi:10.1038/nm.3394
Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9). doi:10.1038/nrc.2016.73
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7). doi:10.1038/nrclinonc.2016.217
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4). doi:10.1038/nrc3239
Vaupel P, Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2). doi:10.1007/s10555-007-9055-1
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6). doi:10.1038/nrc3064
Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12). doi:10.15252/embr.201439246
Overall CM, López-Otín C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat Rev Cancer. 2002;2(9). doi:10.1038/nrc884
Wan C, Allen TM, Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res. 2014;4(1). doi:10.1007/s13346-013-0161-z
Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin Pharmacokinet. 2003;42(5). doi:10.2165/00003088-200342050-00002
Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science (80- ). Published online 2004. doi:10.1126/science.1095833
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. Published online 2006.
Chander A, Chen XL, Naidu DG, et al. Subject index. Miner Eng. Published online 2015.
Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J. Published online 2012. doi:10.1208/s12248-012-9330-0
Amphipathic Weak Base Loading into Preformed Liposomes Having a Transmembrane Ammonium Ion Gradient: From the Bench to Approved Doxil. In: Liposome Technology. ; 2020. doi:10.1201/9780849397271-5
Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. Published online 2008. doi:10.1002/jps.21358
Barenholz Y (Chezy). Doxil® — The First FDA-Approved Nano-Drug: From an Idea to a Product. In: Handbook of Harnessing Biomaterials in Nanomedicine. ; 2020. doi:10.1201/9781003125259-16
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. Published online 2013. doi:10.1016/j.addr.2012.09.037
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. Published online 2005. doi:10.1038/nrd1632
Gabizon A, Amitay Y, Tzemach D, Gorin J, Shmeeda H, Zalipsky S. Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: Studies with human gastro-entero-pancreatic ectopic tumor models. J Control Release. Published online 2012. doi:10.1016/j.jconrel.2011.11.019
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. Published online 2013. doi:10.1016/j.addr.2012.10.002
Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. Published online 2010. doi:10.1038/nrclinonc.2010.139
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. Published online 2011. doi:10.1016/j.addr.2010.04.009
Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces. Published online 2014. doi:10.1021/am5036225
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. Published online 2000. doi:10.1016/S0168-3659(99)00248-5
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. Published online 2016. doi:10.1038/natrevmats.2016.14
Parmar K, Patel J, Pathak Y. Factors affecting the clearance and biodistribution of polymeric nanoparticles. In: Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems. ; 2022. doi:10.1007/978-3-030-83395-4_14
Torchilin VP. Passive and active drug targeting: Drug delivery to tumors as an example. Handb Exp Pharmacol. Published online 2010. doi:10.1007/978-3-642-00477-3_1
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. Published online 2010. doi:10.1016/j.jconrel.2010.08.027
Presant CA, Blayney D, Kennedy P, et al. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet. Published online 1990. doi:10.1016/0140-6736(90)91188-G
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. Published online 2007. doi:10.1208/aapsj0902015
Szebeni J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology. Published online 2005. doi:10.1016/j.tox.2005.07.023
Puri A. Phototriggerable liposomes: Current research and future perspectives. Pharmaceutics. Published online 2014. doi:10.3390/pharmaceutics6010001
Zhao Z, Wang W, Wang G, et al. Dual peptides-modified cationic liposomes for enhanced Lung cancer gene therapy by a gap junction regulating strategy. J Nanobiotechnology. Published online 2023. doi:10.1186/s12951-023-02242-1
Kenchegowda M, Rahamathulla M, Hani U, et al. Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules. Published online 2022. doi:10.3390/molecules27010146
Whitehead KA, Dahlman JE, Langer RS, Anderson DG. Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng. Published online 2011. doi:10.1146/annurev-chembioeng-061010-114133
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. Published online 2009. doi:10.1021/cr800409e
Al-Dosari MS, Gao X. Nonviral gene delivery: Principle, limitations, and recent Progress. AAPS J. Published online 2009. doi:10.1208/s12248-009-9143-y
S.L. M, N. F, P.A. S, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. Published online 2014.
Zhang Y, Li S, Wang Y, et al. A novel and efficient CD22 CAR-T therapy induced a robust antitumor effect in relapsed/refractory leukemia patients when combined with CD19 CAR-T treatment as a sequential therapy. Exp Hematol Oncol. Published online 2022. doi:10.1186/s40164-022-00270-5
Cho YS, Do HM, Lee SJ, Hemmi S, Joo YE, Jung C. Abstract 3739: Efficacy of CD46-mediated Ad5/35 chimeric adenoviral gene therapy in colorectal cancers. Cancer Res. Published online 2016. doi:10.1158/1538-7445.am2016-3739
Wang C, Pan C, Yong H, et al. Emerging non-viral vectors for gene delivery. J Nanobiotechnology. Published online 2023. doi:10.1186/s12951-023-02044-5
La-Beck NM, Gabizon AA. Nanoparticle interactions with the immune system: Clinical implications for liposome-based cancer chemotherapy. Front Immunol. Published online 2017. doi:10.3389/fimmu.2017.00416
Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood - Brain barrier using MRI-guided focused ultrasound. J Control Release. Published online 2014. doi:10.1016/j.jconrel.2014.06.031
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. Published online 2015. doi:10.3389/fphar.2015.00286
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Katarzyna Rudnicka, Paulina Lemieszek, Katarzyna Krukar, Martyna Pustelniak, Nadia Miga-Orczykowska, Ilona Sajkiewicz, Justyna Wójtowicz, Ilona Jasiuk, Ewa Łukaszewska, Klaudia Kister
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 55
Number of citations: 0