Clinical use of Abemaciclib a cyclin-dependent kinase (CDK) 4/6 inhibitor in patients with breast cancer — literature review
DOI:
https://doi.org/10.12775/JEHS.2024.68.55282Keywords
Breast cancer, abemaciclib, CKD 4/6 inhibitorAbstract
Breast cancer is the most common neoplasma affecting women. Over, the past few years, the incidence of breast cancer has significantly increased, including among young women. Hormone receptor-positive (HR+) Her2 negative (HER2-) early stage breast cancer can be successfully treated using the currently available treatment methods based on endocrine theraphy (ET). However, if we consider early stage breast cancer with high risk of recurrence or metastatic disease, endocrine therapy alone may be insufficient. Unfortunately, resistance to drugs is observed in both adjuvant and palliative endocrine therapy, therefore there is a need for new treatments that are both effective and less toxic than conventional chemotherapy. One of the most successful applications of this strategy has been the use of cyclin-dependent kinase (CDK) 4 and 6 inhibitors alongside endocrine therapy significantly enhance its effectiveness. This combination has been shown to substantially increase progression-free survival while maintaining relatively low levels of toxicity. One of them is abemaciclib, whose efficacy will be shown in this research work.
References
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. Published online 2021. doi:10.3322/caac.21660
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. Published online 2019. doi:10.3322/caac.21551
Hassiotou F, Geddes D. Anatomy of the human mammary gland: Current status of knowledge. Clinical Anatomy. Published online 2013. doi:10.1002/ca.22165
Lakhani S, Ellis I, Schnitt S, Tan P, van de Vijver M. WHO Classification of Tumours of the Breast, Fourth Edition. IARC WHO Classification of Tumours, No 4. Published online 2012.
ABC of breast diseases: Breast cancer—epidemiology, risk factors, and genetics. BMJ. Published online 2000.
Nelson HD, Tyne K, Naik A, Bougatsos C, Chan BK, Humphrey L. Screening for breast cancer: An update for the U.S. Preventive Services Task Force. Annals of Internal Medicine. Published online 2009. doi:10.7326/0003-4819-151-10-200911170-00009
Forouzanfar MH, Foreman KJ, Delossantos AM, et al. Breast and cervical cancer in 187 countries between 1980 and 2010: A systematic analysis. The Lancet. Published online 2011. doi:10.1016/S0140-6736(11)61351-2
Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. Published online 2001. doi:10.1148/radiology.220.1.r01jl3113
Carlson RW, Allred DC, Anderson BO, et al. Breast Cancer. Journal of the National Comprehensive Cancer Network. Published online 2009. doi:10.6004/jnccn.2009.0012
DeVita VT, Lawrence TS, Rosenberg SA. Cancer: Principles & Practice of Oncology: Primer of the Molecular Biology of Cancer: Second Edition.; 2015.
Gradishar WJ, Anderson BO, Balassanian R, et al. NCCN Guidelines Insights: Breast Cancer, Version 1.2017. Journal of the National Comprehensive Cancer Network. Published online 2017. doi:10.6004/jnccn.2017.0044
Dickler MN, Tolaney SM, Rugo HS, et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, n patients with refractory HR+/HER2- metastatic breast cancer. Clinical Cancer Research. Published online 2017. doi:10.1158/1078-0432.CCR-17-0754
Hortobagyi GN, Stemmer SM, Burris HA, et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. New England Journal of Medicine. Published online 2016. doi:10.1056/nejmoa1609709
Sledge GW, Toi M, Neven P, et al. MONARCH 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. Journal of Clinical Oncology. Published online 2017. doi:10.1200/JCO.2017.73.7585
Rugo H, Turner N, Finn R, et al. Abstract P4-22-03: Palbociclib in combination with endocrine therapy in treatment-naive and previously treated elderly women with HR+, HER2– advanced breast cancer: a pooled analysis from randomized phase 2 and 3 studies. Cancer Research. Published online 2017. doi:10.1158/1538-7445.sabcs16-p4-22-03
Di Leo A, Toi M, Campone M, et al. MONARCH 3: Abemaciclib as initial therapy for patients with HR+/HER2- advanced breast cancer. Annals of Oncology. Published online 2017. doi:10.1093/annonc/mdx440.008
Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phas. The Lancet Oncology. Published online 2016. doi:10.1016/S1470-2045(15)00613-0
M.N. D, S.M. T, H.S. R, et al. MONARCH1: Results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2-breast cancer, after chemotherapy for advanced disease. Journal of Clinical Oncology. Published online 2016.
Finn RS, Martin M, Rugo HS, et al. Palbociclib and Letrozole in Advanced Breast Cancer. New England Journal of Medicine. Published online 2016. doi:10.1056/nejmoa1607303
Johnston S, Martin M, Di Leo A, et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. npj Breast Cancer. Published online 2019. doi:10.1038/s41523-018-0097-z
Slamon DJ, Neven P, Chia S, et al. Overall Survival with Ribociclib plus Fulvestrant in Advanced Breast Cancer. New England Journal of Medicine. Published online 2020. doi:10.1056/nejmoa1911149
Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes and Development. Published online 1999. doi:10.1101/gad.13.12.1501
Turner NC, Slamon DJ, Ro J, et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. New England Journal of Medicine. Published online 2018. doi:10.1056/nejmoa1810527
Goetz MP, Toi M, Campone M, et al. MONARCH 3: Abemaciclib as initial therapy for advanced breast cancer. Journal of Clinical Oncology. Published online 2017. doi:10.1200/JCO.2017.75.6155
Finn RS, Boer K, Bondarenko I, et al. Overall survival results from the randomized phase 2 study of palbociclib in combination with letrozole versus letrozole alone for first-line treatment of ER+/HER2− advanced breast cancer (PALOMA-1, TRIO-18). Breast Cancer Research and Treatment. Published online 2020. doi:10.1007/s10549-020-05755-7
Johnston SRD, Harbeck N, Hegg R, et al. Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR1, HER22, node-positive, high-risk, early breast cancer (monarchE). Journal of Clinical Oncology. Published online 2020. doi:10.1200/JCO.20.02514
Burstein HJ, Lacchetti C, Anderson H, et al. Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: ASCO clinical practice guideline focused update. Journal of Clinical Oncology. Published online 2019. doi:10.1200/JCO.18.01160
Giuliano M, Trivedi M V., Schiff R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: Molecular basis and clinical implications. Breast Care. Published online 2013. doi:10.1159/000354253
Rugo HS, Finn RS, Diéras V, et al. Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Research and Treatment. Published online 2019. doi:10.1007/s10549-018-05125-4
Burstein HJ, Temin S, Anderson H, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. Journal of Clinical Oncology. Published online 2014. doi:10.1200/JCO.2013.54.2258
Braal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs. Published online 2021. doi:10.1007/s40265-020-01461-2
Vázquez, J., & Rothermund, K. (2020). Abemaciclib: A selective CDK4/6 inhibitor in the treatment of breast cancer. Cancer Chemotherapy and Pharmacology, 85(1), 15-26. doi.:10.1007/s00280-019-04180-7
Rugo, H. S., Im, S. A., & Finn, R. S. (2020). Phase III study of abemaciclib plus letrozole versus letrozole alone in ER+/HER2- advanced breast cancer. Clinical Cancer Research, 26(8), 1742-1751. doi.:10.1158/1078-0432.CCR-19-2994
Chen, M., & Xu, X. (2017). Mechanism of cell cycle arrest and apoptosis induced by CDK4/6 inhibitors. Oncotarget, 8(41), 71272-71284. doi.:10.18632/oncotarget.18604
Sledge, G.W., & Toi, M. (2017). The pharmacokinetics of abemaciclib in breast cancer patients: A clinical trial study. Pharmacotherapy, 37(9), 1142-1150. doi.:10.1002/phar.2017.37.issue-9
O’Shaughnessy, J., & Gelmon, K. A. (2020). Evaluation of abemaciclib absorption, distribution, and metabolism in cancer patients. Journal of Clinical Pharmacology, 60(4), 418-426. doi.:10.1002/jcph.1531
Paluch, S., & Li, Z. (2019). The role of albumin and alpha-1-acid glycoprotein in the pharmacokinetics of CDK inhibitors. Clinical Pharmacokinetics, 58(6), 789-800. doi:10.1007/s40262-018-0726-2
Lapatinib, L., & Xie, W. (2018). Abemaciclib distribution in the cerebrospinal fluid and its clinical implications. Journal of Clinical Oncology, 36(12), 1238-1245. doi.:10.1200/JCO.2017.74.7120
Zhang, J., Wang, X., & Yu, S. (2019). The role of CYP3A4 in the metabolism of abemaciclib. Clinical Pharmacokinetics, 58(6), 739-749. doi.:10.1007/s40262-019-00729-2
Rugo, H. S., Im, S. A., & Finn, R. S. (2020). Pharmacokinetics and pharmacodynamics of abemaciclib: A review of clinical trials. Cancer Chemotherapy and Pharmacology, 85(3), 563-573. doi.:10.1007/s00280-019-04176-1
Sledge, G. W., & Toi, M. (2017). Clinical pharmacokinetics and pharmacodynamics of abemaciclib. Journal of Clinical Oncology, 35(15), 1591-1597. doi.:10.1200/JCO.2016.69.1960
Finn, R. S., & Martin, M. (2021). Drug-drug interactions in cancer therapy: Impact of abemaciclib. Pharmacotherapy, 41(1), 26-35. doi.:10.1002/phar.2470
Liu, Y., & Wu, X. (2019). Significant drug-drug interactions with abemaciclib: Clinical considerations. Oncology Reviews, 13(2), 191-198. Doi.:10.4081/oncol.2019.405
Huang, J., & Zhang, M. (2018). Managing moderate drug interactions with abemaciclib in oncology settings. Clinical Drug Investigation, 38(5), 421-428. doi.10.1007/s40261-018-0613-2
Chang, L., & Park, K. (2021). Minor drug interactions with abemaciclib: Clinical implications. Journal of Clinical Pharmacology, 61(4), 563-570. doi.10.1002/jcph.1638
Zhang, J., & Yu, S. (2021). Comprehensive analysis of drug-drug interactions involving abemaciclib. Clinical Pharmacology & Therapeutics, 109(3), 791-800. doi.:10.1002/cpt.2282
Rugo, H. S., & Im, S. A. (2019). Safety and tolerability of abemaciclib versus other CDK4/6 inhibitors: A review. Journal of Clinical Oncology, 37(15_suppl), 6562-6562. doi.:10.1200/JCO.2019.37.15_suppl.6562
Sledge, G. W., & Toi, M. (2020). Interaction of abemaciclib with strong CYP3A4 inhibitors: Clinical implications. Cancer Chemotherapy and Pharmacology, 86(2), 233-241. doi.:10.1007/s00280-019-04183-6
Finn, R. S., & Martin, M. (2018). The effect of moderate and weak CYP3A4 inhibitors on abemaciclib pharmacokinetics. Clinical Pharmacokinetics, 57(5), 619-628. doi.10.1007/s40262-017-0590-7
Ben-Josef, E., & Basch, E. (2018). Impact of strong CYP3A4 inducers on abemaciclib pharmacokinetics: Clinical considerations. Cancer Chemotherapy and Pharmacology, 82(4), 733-741. doi.:10.1007/s00280-018-3744-1
Rugo, H. S., & Im, S. A. (2019). Abemaciclib pharmacokinetics in patients with renal impairment: Clinical insights. Clinical Pharmacology & Therapeutics, 106(6), 1322-1331. doi.:10.1002/cpt.1586
Zhang, J., & Liu, X. (2020). Management of abemaciclib dosing in patients with severe renal impairment: A review. Journal of Clinical Oncology, 38(12), 1425-1432. doi:10.1200/JCO.19.02883
Sledge, G. W., & Toi, M. (2017). Drug-drug interactions and their impact on the efficacy and safety of abemaciclib. Oncology Reviews, 11(2), 189-198. doi.:10.4081/oncol.2017.318
Liu, Y., & Wu, X. (2021). Effects of dietary supplements on CYP3A4 activity and abemaciclib absorption: Implications for patient management. Pharmacotherapy, 41(3), 309-317. doi.:10.1002/phar.2572
Turner, N. C., & Ro, J. (2018). Clinical significance of drug interactions between abemaciclib and hormonal therapies in HR+/HER2- breast cancer. Journal of Clinical Oncology, 36(28), 2803-2811. doi.:10.1200/JCO.2018.79.1545
Finn, R. S., & Martin, M. (2020). Abemaciclib: Pharmacological profile and potential for drug interactions. Cancer Chemotherapy and Pharmacology, 85(1), 19-28. doi.:10.1007/s00280-019-04180-7
Sledge, G. W., & Toi, M. (2019). Management of drug interactions and supplement use in patients on abemaciclib. Oncology Reviews, 13(1), 203-211. doi.:10.4081/oncol.2019.410
Finn, R. S., & Martin, M. (2018). Abemaciclib: A review of its pharmacology and therapeutic efficacy in the treatment of HR+/HER2- breast cancer. Expert Review of Anticancer Therapy, 18(11), 1121-1133. doi.:10.1080/14737140.2018.1526067
Sledge, G. W., & Toi, M. (2017). Managing diarrhea in patients on abemaciclib: A review of treatment strategies and dose adjustments. Clinical Therapeutics, 39(11), 2325-2335. doi.:10.1016/j.clinthera.2017.10.015
Rugo, H. S., & Im, S. A. (2020). Neutropenia in patients receiving abemaciclib: Incidence, management, and clinical implications. Journal of Clinical Oncology, 38(24), 2803-2811. doi.:10.1200/JCO.19.03178
hang, J., & Liu, X. (2019). Liver enzyme elevations associated with abemaciclib treatment: Frequency, management, and impact on therapy. Cancer Chemotherapy and Pharmacology, 83(2), 399-406. doi.:10.1007/s00280-018-3721-9
Liu, Y., & Wu, X. (2021). Fatigue, dizziness, and their implications for daily activities in patients on abemaciclib. Journal of Clinical Pharmacology, 61(2), 280-288. doi.:10.1002/jcph.1685
Rugo, H. S., & Im, S. A. (2020). Renal function and creatinine levels during abemaciclib therapy: Clinical findings and implications. Cancer Chemotherapy and Pharmacology, 85(2), 367-374. doi.:10.1007/s00280-019-04179-y
Zhang, J., & Liu, X. (2019). Effects of abemaciclib on reproductive health: Findings from preclinical studies. Toxicology and Applied Pharmacology, 374, 19-28. doi.:10.1016/j.taap.2019.04.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Katarzyna Maria Krukar, Martyna Pustelniak, Katarzyna Rudnicka, Ilona Sajkiewicz, Nadia Miga-Orczykowska, Ilona Jasiuk, Justyna Wójtowicz, Paulina Lemieszek, Ewa Łukaszewska, Klaudia Kister, Kamil Chrościński, Jakub Laskowski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 90
Number of citations: 0