Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Composite skin substitutes, 3D skin bioprinting and the “BioMask” concept in regenerating skin defects - review
  • Home
  • /
  • Composite skin substitutes, 3D skin bioprinting and the “BioMask” concept in regenerating skin defects - review
  1. Home /
  2. Archives /
  3. Vol. 67 (2024) /
  4. Medical Sciences

Composite skin substitutes, 3D skin bioprinting and the “BioMask” concept in regenerating skin defects - review

Authors

  • Weronika Kiełt Medical University of Lublin https://orcid.org/0000-0002-1933-6271
  • Julia Kozłowska Medical University of Lublin, located at Aleje Racławickie 1, 20-059 Lublin, Poland https://orcid.org/0000-0002-6161-970X
  • Gabriela Broniec Non-public Healthcare Facility, Neodent Dental Clinic, located at 15 Wallenroda St., 20-607 Lublin, Poland https://orcid.org/0009-0006-6615-3677
  • Barbara Wajdowicz Non-public Healthcare Facility, Em-Dent Dental Clinic, located at 11 Weteranów St., 20-038 Lublin, Poland https://orcid.org/0009-0006-1754-6124
  • Aleksandra Kudła Medical University of Gdansk, located at 3a Marii Skłodowskiej-Curie St., 80-210 Gdańsk, Poland https://orcid.org/0009-0005-8734-8310
  • Rozalia Czapiewska Medical University of Gdansk, located at 3a Marii Skłodowskiej-Curie St., 80-210 Gdańsk, Poland https://orcid.org/0009-0002-8198-471X
  • Aleksandra Dziewulska Non-public Healthcare Facility, Lekarze Specjalisci LLC, 7 Topolowa St., 20-352 Lublin, Poland https://orcid.org/0000-0001-6405-409X
  • Aleksandra Wróbel Chair and Department of Public Health, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland https://orcid.org/0009-0007-6104-3804
  • Laura Pacek Non-public Healthcare Facility, Lekarze Specjalisci LLC, 7 Topolowa St., 20-352 Lublin, Poland https://orcid.org/0000-0001-6069-7653
  • Klaudia Kowalska Łukasz Bańczyk Specialist Dental Practice, 166 Jana Kilińskiego St., 42-218 Częstochowa, Poland https://orcid.org/0009-0001-5240-7983

DOI:

https://doi.org/10.12775/JEHS.2024.67.55096

Keywords

skin substitutes, bioengineered skin, composite skin substitutes, 3D skin substitute, BioMask

Abstract

The treatment of skin trauma, especially facial skin trauma, is a major challenge due to its complex structure, the presence of appendages, color, texture, and the large area to be reconstructed in extensive trauma. “The gold standard” for treating trauma is autologous intermediate thickness skin grafting. An alternative solution is the usage of bioengineered skin substitutes. Tissue engineering is intended to provide patients with better treatment options and more effective pain reduction. Unique skin lesions are those related to the face. To fulfill the need to improve the results of facial skin reconstruction, the “Biomask” concept was introduced for the treatment of facial wounds.

The purpose of this review is to analyze composite dermal-epidermal substitutes already on the market for clinical use, as well as briefly discussing materials in the testing phase, focusing on 3D skin bioprinting and facial trauma regeneration using “BioMask”.

PubMed and Google Scholar databases were searched for relevant sources. Search terms included “skin substitutes”, “synthetic skin substitutes”, “bioengineered skin”, “composite skin substitutes” and additionally each analyzed unit of composite skin substitutes was searched.

Bioengineered skin substitutes effectively fulfill the role of dressings during the reconstruction of skin injuries. The development of 3D skin bioprinting is enabling the increasing and effective use of these materials. The high requirements in the treatment of facial skin injuries are the trigger for the development of new materials such as "BioMask". The synergy of new technologies makes it possible to create improved methods of wound dressing and reconstruction of skin defects.

References

Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, i in. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci. 2017;18(4):789. doi: 10.3390/ijms18040789

Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58. doi: 10.1098/rsif.2009.0403

Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: Acute phase. Wound Repair Regen. 2014;22(1):14–22. doi: 10.1111/wrr.12119

Fetterolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds Compend Clin Res Pract. 2012;24(10):299–307.

Tenenhaus M. The Use of Dehydrated Human Amnion/Chorion Membranes in the Treatment of Burns and Complex Wounds: Current and Future Applications. Ann Plast Surg. 2017;78(2):S11–3. DOI: 10.1097/SAP.0000000000000983

Bujang-Safawi E, Halim AS, Khoo TL, Dorai AA. Dried irradiated human amniotic membrane as a biological dressing for facial burns—A 7-year case series. Burns. 2010;36(6):876–82. DOI: 10.1016/j.burns.2009.07.001

Kumar P. Classification of skin substitutes. Burns. 2008;34(1):148–9. DOI: 10.1016/j.burns.2007.04.016

Sopata M, Sopata M, Zaporowska-Stachowiak I. The latest achievements and future of skin substitutes in chronic wound management. Leczenie Ran. 2017;14(2):33–8. DOI: dx.doi.org/10.15374/LR2017008

Varkey M, Ding J, Tredget E. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. J Funct Biomater. 2015;6(3):547–63. DOI: 10.3390/jfb6030547

Mazio C, Casale C, Imparato G, Urciuolo F, Attanasio C, De Gregorio M, i in. Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials. 2019;192:159–70. DOI: 10.1016/j.biomaterials.2018.11.018

Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of Tissue-Engineered Capillaries with the Host’s Vasculature in a Reconstructed Skin Transplanted on Mice. Am J Transplant. 2005;5(5):1002–10. DOI: 10.1111/j.1600-6143.2005.00790.x

Cheng X, Yoo JJ, Hale RG. Biomask for Skin Regeneration. Regen Med. 2014;9(3):245–8. DOI: 10.2217/rme.14.22

Stone RC, Stojadinovic O, Rosa AM, Ramirez HA, Badiavas E, Blumenberg M, i in. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med. 2017;9(371):eaaf8611. DOI: 10.1126/scitranslmed.aaf8611

Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in Acute Human Wounds. Tissue Eng. 2004;10(7–8):1180–95. DOI: 10.1089/ten.2004.10.1180

Sabolinski ML, Archambault T. Real-world data analysis of bilayered living cellular construct and fetal bovine collagen dressing treatment for pressure injuries: a comparative effectiveness study. J Comp Eff Res. 2024;13(4):e230109. DOI: 10.57264/cer-2023-0109

Eudy M, Eudy CL, Roy S. Apligraf as an Alternative to Skin Grafting in the Pediatric Population. Cureus. 2021;13(7):e16226. DOI: 10.7759/cureus.16226

Kirsner RS, Sabolinski ML, Parsons NB, Skornicki M, Marston WA. Comparative effectiveness of a bioengineered living cellular construct vs. a dehydrated human amniotic membrane allograft for the treatment of diabetic foot ulcers in a real world setting. Wound Repair Regen. 2015;23(5):737–44. DOI: 10.1111/wrr.12332

Glat P, Orgill DP, Galiano R, Armstrong D, Serena T, DiDomenico LA, i in. Placental Membrane Provides Improved Healing Efficacy and Lower Cost Versus a Tissue-Engineered Human Skin in the Treatment of Diabetic Foot Ulcerations. Plast Reconstr Surg - Glob Open. 2019;7(8):e2371. DOI: 10.1097/GOX.0000000000002371

Towler MA, Rush EW, Richardson MK, Williams CL. Randomized, Prospective, Blinded-Enrollment, Head-To-Head Venous Leg Ulcer Healing Trial Comparing Living, Bioengineered Skin Graft Substitute (Apligraf) with Living, Cryopreserved, Human Skin Allograft (TheraSkin). Clin Podiatr Med Surg. 2018;35(3):357–65. DOI: 10.1016/j.cpm.2018.02.006

Stojic M, López V, Montero A, Quílez C, De Aranda Izuzquiza G, Vojtova L, i in. Skin tissue engineering. W: Biomaterials for Skin Repair and Regeneration . Elsevier; 2019. s. 59–99. doi: 10.3389/fsurg.2021.640879

Shi R, Chen D, Liu Q, Wu Y, Xu X, Zhang L, i in. Recent Advances in Synthetic Bioelastomers. Int J Mol Sci. 2009;10(10):4223–56. doi: 10.3390/ijms10104223

Radder AM, Leenders H, Van Blitterswijk CA. Bone-bonding behaviour of poly(ethylene oxide)-polybutylene terephthalate copolymer coatings and bulk implants: a comparative study. Biomaterials. 1995;16(7):507–13. DOI: 10.1016/0142-9612(95)91122-f

Brennecke F, Clodt J, Brinkmann T, Abetz V. Numerical and experimental investigation of the unexpected thickening effect during PolyActive TM coating of TFC membranes. J Adv Manuf Process. 2024;6(2):e10175. DOI: 10.1002/amp2.10175

Karunakaran M, Shevate R, Kumar M, Peinemann KV. CO 2 -selective PEO–PBT (PolyActiveTM)/graphene oxide composite membranes. Chem Commun. 2015;51(75):14187–90. DOI: 10.1039/C5CC04999G

Schuldt K, Lillepärg J, Pohlmann J, Brinkmann T, Shishatskiy S. Permeance of Condensable Gases in Rubbery Polymer Membranes at High Pressure. Membranes. 2024;14(3):66. DOI: 10.3390/membranes14030066

Nilforoushzadeh MA, Amirkhani MA, Khodaverdi E, Razzaghi Z, Afzali H, Izadpanah S, i in. Tissue engineering in dermatology - from lab to market. Tissue Cell. 2022;74:101717. DOI: 10.1016/j.tice.2021.101717

Uccioli L. A Clinical Investigation on the Characteristics and Outcomes of Treating Chronic Lower Extremity Wounds using the TissueTech Autograft System. Int J Low Extrem Wounds. 2003;2(3):140–51. DOI: 10.1177/1534734603258480

Bianchini C, Pelucchi S, Galassi G, Mandrioli G, Ciorba A, Pastore A. Use of autologous dermal graft in the treatment of parotid surgery wounds for prevention of neck scars: preliminary results. J Otolaryngol - Head Neck Surg J Oto-Rhino-Laryngol Chir Cervico-Faciale. 2008;37(2):174–8.

Steiglitz BM, Maher RJ, Gratz KR, Schlosser S, Foster J, Pradhan-Bhatt S, i in. The viable bioengineered allogeneic cellularized construct StrataGraft® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing. Burns. 2024;50(2):424–32. DOI: 10.1016/j.burns.2023.06.001

Schurr MJ, Foster KN, Lokuta MA, Rasmussen CA, Thomas-Virnig CL, Faucher LD, i in. Clinical Evaluation of NIKS-Based Bioengineered Skin Substitute Tissue in Complex Skin Defects: Phase I/IIa Clinical Trial Results. Adv Wound Care. 2012;1(2):95–103. DOI: 10.1089/wound.2011.0343

Centanni JM, Straseski JA, Wicks A, Hank JA, Rasmussen CA, Lokuta MA, i in. StrataGraft Skin Substitute Is Well-tolerated and Is Not Acutely Immunogenic in Patients With Traumatic Wounds: Results From a Prospective, Randomized, Controlled Dose Escalation Trial. Ann Surg. 2011;253(4):672–83. DOI: 10.1097/SLA.0b013e318210f3bd

Holmes Iv JH, Cancio LC, Carter JE, Faucher LD, Foster K, Hahn HD, i in. Pooled safety analysis of STRATA2011 and STRATA2016 clinical trials evaluating the use of StrataGraft® in patients with deep partial-thickness thermal burns. Burns. 2022;48(8):1816–24. DOI: 10.1016/j.burns.2022.07.013

Gibson ALF, Holmes JH, Shupp JW, Smith D, Joe V, Carson J, i in. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns. 2021;47(5):1024–37. DOI: 10.1016/j.burns.2021.04.021

Debels H, Hamdi M, Abberton K, Morrison W. Dermal Matrices and Bioengineered Skin Substitutes: A Critical Review of Current Options. Plast Reconstr Surg Glob Open. 2015;3(1):e284. DOI: 10.1097/GOX.0000000000000219

Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int J Biol Macromol. 2024;266:131281. DOI: 10.1016/j.ijbiomac.2024.131281

Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006. DOI: 10.1088/1758-5090/9/1/015006

Wang S, Xiong Y, Chen J, Ghanem A, Wang Y, Yang J, i in. Three Dimensional Printing Bilayer Membrane Scaffold Promotes Wound Healing. Front Bioeng Biotechnol. 2019;7:348. DOI: 10.3389/fbioe.2019.00348

Lian Q, Jiao T, Zhao T, Wang H, Yang S, Li D. 3D Bioprinted Skin Substitutes for Accelerated Wound Healing and Reduced Scar. J Bionic Eng. 2021;18(4):900–14. DOI: 10.1007/s42235-021-0053-8

Baltazar T, Merola J, Catarino C, Xie CB, Kirkiles-Smith NC, Lee V, i in. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng Part A. 2020;26(5–6):227–38. DOI: 10.1089/ten.TEA.2019.0201

A. Levin A, A. Karalkin P, V. Koudan E, S. Senatov F, A. Parfenov V, A. Lvov V, i in. Commercial articulated collaborative in situ 3D bioprinter for skin wound healing. Int J Bioprinting. 2023;9(2):675. DOI: 10.18063/ijb.v9i2.675

McCarty JC, Herrera-Escobar JP, Gadkaree SK, El Moheb M, Kaafarani HMA, Velmahos G, i in. Long-Term Functional Outcomes of Trauma Patients With Facial Injuries. J Craniofac Surg. 2021;32(8):2584–7. DOI: 10.1097/SCS.0000000000007818

Seol YJ, Lee H, Copus JS, Kang HW, Cho DW, Atala A, i in. 3D bioprinted biomask for facial skin reconstruction. Bioprinting. 2018;10:e00028. DOI: 10.1016/j.bprint.2018.e00028

Downloads

  • PDF

Published

2024-09-14

How to Cite

1.
KIEŁT, Weronika, KOZŁOWSKA, Julia, BRONIEC, Gabriela, WAJDOWICZ, Barbara, KUDŁA, Aleksandra, CZAPIEWSKA, Rozalia, DZIEWULSKA, Aleksandra, WRÓBEL, Aleksandra, PACEK, Laura and KOWALSKA, Klaudia. Composite skin substitutes, 3D skin bioprinting and the “BioMask” concept in regenerating skin defects - review. Journal of Education, Health and Sport. Online. 14 September 2024. Vol. 67, p. 55096. [Accessed 28 June 2025]. DOI 10.12775/JEHS.2024.67.55096.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 67 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Weronika Kiełt, Julia Kozłowska, Gabriela Broniec, Barbara Wajdowicz, Aleksandra Kudła, Rozalia Czapiewska, Aleksandra Dziewulska, Aleksandra Wróbel, Laura Pacek, Klaudia Kowalska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 205
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

skin substitutes, bioengineered skin, composite skin substitutes, 3D skin substitute, BioMask
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop