Composite skin substitutes, 3D skin bioprinting and the “BioMask” concept in regenerating skin defects - review
DOI:
https://doi.org/10.12775/JEHS.2024.67.55096Keywords
skin substitutes, bioengineered skin, composite skin substitutes, 3D skin substitute, BioMaskAbstract
The treatment of skin trauma, especially facial skin trauma, is a major challenge due to its complex structure, the presence of appendages, color, texture, and the large area to be reconstructed in extensive trauma. “The gold standard” for treating trauma is autologous intermediate thickness skin grafting. An alternative solution is the usage of bioengineered skin substitutes. Tissue engineering is intended to provide patients with better treatment options and more effective pain reduction. Unique skin lesions are those related to the face. To fulfill the need to improve the results of facial skin reconstruction, the “Biomask” concept was introduced for the treatment of facial wounds.
The purpose of this review is to analyze composite dermal-epidermal substitutes already on the market for clinical use, as well as briefly discussing materials in the testing phase, focusing on 3D skin bioprinting and facial trauma regeneration using “BioMask”.
PubMed and Google Scholar databases were searched for relevant sources. Search terms included “skin substitutes”, “synthetic skin substitutes”, “bioengineered skin”, “composite skin substitutes” and additionally each analyzed unit of composite skin substitutes was searched.
Bioengineered skin substitutes effectively fulfill the role of dressings during the reconstruction of skin injuries. The development of 3D skin bioprinting is enabling the increasing and effective use of these materials. The high requirements in the treatment of facial skin injuries are the trigger for the development of new materials such as "BioMask". The synergy of new technologies makes it possible to create improved methods of wound dressing and reconstruction of skin defects.
References
Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, i in. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci. 2017;18(4):789. doi: 10.3390/ijms18040789
Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58. doi: 10.1098/rsif.2009.0403
Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: Acute phase. Wound Repair Regen. 2014;22(1):14–22. doi: 10.1111/wrr.12119
Fetterolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds Compend Clin Res Pract. 2012;24(10):299–307.
Tenenhaus M. The Use of Dehydrated Human Amnion/Chorion Membranes in the Treatment of Burns and Complex Wounds: Current and Future Applications. Ann Plast Surg. 2017;78(2):S11–3. DOI: 10.1097/SAP.0000000000000983
Bujang-Safawi E, Halim AS, Khoo TL, Dorai AA. Dried irradiated human amniotic membrane as a biological dressing for facial burns—A 7-year case series. Burns. 2010;36(6):876–82. DOI: 10.1016/j.burns.2009.07.001
Kumar P. Classification of skin substitutes. Burns. 2008;34(1):148–9. DOI: 10.1016/j.burns.2007.04.016
Sopata M, Sopata M, Zaporowska-Stachowiak I. The latest achievements and future of skin substitutes in chronic wound management. Leczenie Ran. 2017;14(2):33–8. DOI: dx.doi.org/10.15374/LR2017008
Varkey M, Ding J, Tredget E. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. J Funct Biomater. 2015;6(3):547–63. DOI: 10.3390/jfb6030547
Mazio C, Casale C, Imparato G, Urciuolo F, Attanasio C, De Gregorio M, i in. Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials. 2019;192:159–70. DOI: 10.1016/j.biomaterials.2018.11.018
Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of Tissue-Engineered Capillaries with the Host’s Vasculature in a Reconstructed Skin Transplanted on Mice. Am J Transplant. 2005;5(5):1002–10. DOI: 10.1111/j.1600-6143.2005.00790.x
Cheng X, Yoo JJ, Hale RG. Biomask for Skin Regeneration. Regen Med. 2014;9(3):245–8. DOI: 10.2217/rme.14.22
Stone RC, Stojadinovic O, Rosa AM, Ramirez HA, Badiavas E, Blumenberg M, i in. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med. 2017;9(371):eaaf8611. DOI: 10.1126/scitranslmed.aaf8611
Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in Acute Human Wounds. Tissue Eng. 2004;10(7–8):1180–95. DOI: 10.1089/ten.2004.10.1180
Sabolinski ML, Archambault T. Real-world data analysis of bilayered living cellular construct and fetal bovine collagen dressing treatment for pressure injuries: a comparative effectiveness study. J Comp Eff Res. 2024;13(4):e230109. DOI: 10.57264/cer-2023-0109
Eudy M, Eudy CL, Roy S. Apligraf as an Alternative to Skin Grafting in the Pediatric Population. Cureus. 2021;13(7):e16226. DOI: 10.7759/cureus.16226
Kirsner RS, Sabolinski ML, Parsons NB, Skornicki M, Marston WA. Comparative effectiveness of a bioengineered living cellular construct vs. a dehydrated human amniotic membrane allograft for the treatment of diabetic foot ulcers in a real world setting. Wound Repair Regen. 2015;23(5):737–44. DOI: 10.1111/wrr.12332
Glat P, Orgill DP, Galiano R, Armstrong D, Serena T, DiDomenico LA, i in. Placental Membrane Provides Improved Healing Efficacy and Lower Cost Versus a Tissue-Engineered Human Skin in the Treatment of Diabetic Foot Ulcerations. Plast Reconstr Surg - Glob Open. 2019;7(8):e2371. DOI: 10.1097/GOX.0000000000002371
Towler MA, Rush EW, Richardson MK, Williams CL. Randomized, Prospective, Blinded-Enrollment, Head-To-Head Venous Leg Ulcer Healing Trial Comparing Living, Bioengineered Skin Graft Substitute (Apligraf) with Living, Cryopreserved, Human Skin Allograft (TheraSkin). Clin Podiatr Med Surg. 2018;35(3):357–65. DOI: 10.1016/j.cpm.2018.02.006
Stojic M, López V, Montero A, Quílez C, De Aranda Izuzquiza G, Vojtova L, i in. Skin tissue engineering. W: Biomaterials for Skin Repair and Regeneration . Elsevier; 2019. s. 59–99. doi: 10.3389/fsurg.2021.640879
Shi R, Chen D, Liu Q, Wu Y, Xu X, Zhang L, i in. Recent Advances in Synthetic Bioelastomers. Int J Mol Sci. 2009;10(10):4223–56. doi: 10.3390/ijms10104223
Radder AM, Leenders H, Van Blitterswijk CA. Bone-bonding behaviour of poly(ethylene oxide)-polybutylene terephthalate copolymer coatings and bulk implants: a comparative study. Biomaterials. 1995;16(7):507–13. DOI: 10.1016/0142-9612(95)91122-f
Brennecke F, Clodt J, Brinkmann T, Abetz V. Numerical and experimental investigation of the unexpected thickening effect during PolyActive TM coating of TFC membranes. J Adv Manuf Process. 2024;6(2):e10175. DOI: 10.1002/amp2.10175
Karunakaran M, Shevate R, Kumar M, Peinemann KV. CO 2 -selective PEO–PBT (PolyActiveTM)/graphene oxide composite membranes. Chem Commun. 2015;51(75):14187–90. DOI: 10.1039/C5CC04999G
Schuldt K, Lillepärg J, Pohlmann J, Brinkmann T, Shishatskiy S. Permeance of Condensable Gases in Rubbery Polymer Membranes at High Pressure. Membranes. 2024;14(3):66. DOI: 10.3390/membranes14030066
Nilforoushzadeh MA, Amirkhani MA, Khodaverdi E, Razzaghi Z, Afzali H, Izadpanah S, i in. Tissue engineering in dermatology - from lab to market. Tissue Cell. 2022;74:101717. DOI: 10.1016/j.tice.2021.101717
Uccioli L. A Clinical Investigation on the Characteristics and Outcomes of Treating Chronic Lower Extremity Wounds using the TissueTech Autograft System. Int J Low Extrem Wounds. 2003;2(3):140–51. DOI: 10.1177/1534734603258480
Bianchini C, Pelucchi S, Galassi G, Mandrioli G, Ciorba A, Pastore A. Use of autologous dermal graft in the treatment of parotid surgery wounds for prevention of neck scars: preliminary results. J Otolaryngol - Head Neck Surg J Oto-Rhino-Laryngol Chir Cervico-Faciale. 2008;37(2):174–8.
Steiglitz BM, Maher RJ, Gratz KR, Schlosser S, Foster J, Pradhan-Bhatt S, i in. The viable bioengineered allogeneic cellularized construct StrataGraft® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing. Burns. 2024;50(2):424–32. DOI: 10.1016/j.burns.2023.06.001
Schurr MJ, Foster KN, Lokuta MA, Rasmussen CA, Thomas-Virnig CL, Faucher LD, i in. Clinical Evaluation of NIKS-Based Bioengineered Skin Substitute Tissue in Complex Skin Defects: Phase I/IIa Clinical Trial Results. Adv Wound Care. 2012;1(2):95–103. DOI: 10.1089/wound.2011.0343
Centanni JM, Straseski JA, Wicks A, Hank JA, Rasmussen CA, Lokuta MA, i in. StrataGraft Skin Substitute Is Well-tolerated and Is Not Acutely Immunogenic in Patients With Traumatic Wounds: Results From a Prospective, Randomized, Controlled Dose Escalation Trial. Ann Surg. 2011;253(4):672–83. DOI: 10.1097/SLA.0b013e318210f3bd
Holmes Iv JH, Cancio LC, Carter JE, Faucher LD, Foster K, Hahn HD, i in. Pooled safety analysis of STRATA2011 and STRATA2016 clinical trials evaluating the use of StrataGraft® in patients with deep partial-thickness thermal burns. Burns. 2022;48(8):1816–24. DOI: 10.1016/j.burns.2022.07.013
Gibson ALF, Holmes JH, Shupp JW, Smith D, Joe V, Carson J, i in. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns. 2021;47(5):1024–37. DOI: 10.1016/j.burns.2021.04.021
Debels H, Hamdi M, Abberton K, Morrison W. Dermal Matrices and Bioengineered Skin Substitutes: A Critical Review of Current Options. Plast Reconstr Surg Glob Open. 2015;3(1):e284. DOI: 10.1097/GOX.0000000000000219
Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int J Biol Macromol. 2024;266:131281. DOI: 10.1016/j.ijbiomac.2024.131281
Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006. DOI: 10.1088/1758-5090/9/1/015006
Wang S, Xiong Y, Chen J, Ghanem A, Wang Y, Yang J, i in. Three Dimensional Printing Bilayer Membrane Scaffold Promotes Wound Healing. Front Bioeng Biotechnol. 2019;7:348. DOI: 10.3389/fbioe.2019.00348
Lian Q, Jiao T, Zhao T, Wang H, Yang S, Li D. 3D Bioprinted Skin Substitutes for Accelerated Wound Healing and Reduced Scar. J Bionic Eng. 2021;18(4):900–14. DOI: 10.1007/s42235-021-0053-8
Baltazar T, Merola J, Catarino C, Xie CB, Kirkiles-Smith NC, Lee V, i in. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng Part A. 2020;26(5–6):227–38. DOI: 10.1089/ten.TEA.2019.0201
A. Levin A, A. Karalkin P, V. Koudan E, S. Senatov F, A. Parfenov V, A. Lvov V, i in. Commercial articulated collaborative in situ 3D bioprinter for skin wound healing. Int J Bioprinting. 2023;9(2):675. DOI: 10.18063/ijb.v9i2.675
McCarty JC, Herrera-Escobar JP, Gadkaree SK, El Moheb M, Kaafarani HMA, Velmahos G, i in. Long-Term Functional Outcomes of Trauma Patients With Facial Injuries. J Craniofac Surg. 2021;32(8):2584–7. DOI: 10.1097/SCS.0000000000007818
Seol YJ, Lee H, Copus JS, Kang HW, Cho DW, Atala A, i in. 3D bioprinted biomask for facial skin reconstruction. Bioprinting. 2018;10:e00028. DOI: 10.1016/j.bprint.2018.e00028
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Weronika Kiełt, Julia Kozłowska, Gabriela Broniec, Barbara Wajdowicz, Aleksandra Kudła, Rozalia Czapiewska, Aleksandra Dziewulska, Aleksandra Wróbel, Laura Pacek, Klaudia Kowalska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 109
Number of citations: 0