Relationships between glomerular filtration rate and HRV/EEG parameters
DOI:
https://doi.org/10.12775/JEHS.2024.62.52933Keywords
glomerular filtration rate, HRV, qEEG, relationshipsAbstract
Background. Sympathetic outflow may be capable of selectively increasing or decreasing glomerular capillary pressure and hence glomerular filtration rate (GFR) by differentially activating separate populations of renal nerves. Sympathetic outflow to the kidney is regulated by major cortical, brainstem and medullary areas. The purpose of this study is to find out the relationship between GFR and HRV/EEG parameters as markers of the neural regulation of the kidney.
Materials and Methods. The object of observations were 10 men aged 37-69 years without clinical diagnosis tested twice with 7-days interval. The rate of glomerular filtration was calculated according to endogenous creatinine clearance and the Cockcroft & Gault formula. The state of the autonomic nervous system was assessed by the HRV method. Simultaneosly qEEG recorded.
Results. For the sample as a whole, a weak (r=0.396; p>0.05) correlation was found between HRV-marker of sympathetic tone and GFR. However, two clusters of individuals can be distinguished: with a strong correlation (r=0.852; n=12) and its complete absence (n=8). The qEEG method revealed neural structures generating delta and theta rhythms that upregulate GFR, and generating beta rhythm that downregulate GFR. The regression model, which includes 16 EEG parameters, allows estimating GFR with a standard error of 3,4 mL/min.
Conclusion. Glomerular filtration rate is subject to the modulatory regulatory influence of the nervous system and can be estimated with high accuracy by EEG parameters.
References
Berntson, G., Bigger, T., Eckberg, D., Grossman, P., Kaufmann, P., Malik, M., Nagaraja, H., Porges, S., Saul, J., Stone, P., & Van der Molen, M. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623-648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
Cockcroft, D.W. & Gault, M.H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron, 16(1), 31-41. https://doi.org/10.1159/000180580
Denton, K.M., Luff, S.E., Shweta, A., & Anderson, W.P. (2004). Differential neural control of glomerular ultrafiltration. Clinical and Experimental Pharmacology and Physiology, 31(5‐6), 380-386. http://www.apps.org.au/Proceedings/34/85-91
DiBona, G.F. (2003). Neural control of the kidney: past, present, and future. Hypertension, 41(3), 621-624. https://doi.org/10.1161/01.HYP.0000047205.52509.8A
Goryachkovskiy, А.М. (1998). Clinical Biochemistry [in Russian]. Odesa: Astroprint.
Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of ESC and NASPE. (1996). Circulation, 93(5), 1043-1065. https://doi.org/10.1161/01.CIR.93.5.1043
Hozhenko, A.І., Kravchuk, A.V., Nikitenko, O.P., Моskalenko, О.М. & Sirman, V.M. (2015). Functional renal reserve [in Ukrainian]. Odesa: Feniks.
Johns, E.J. (2014). The neural regulation of the kidney in hypertension and renal failure. Experimental Physiology, 99(2), 289-294. https://doi.org/10.1113/expphysiol.2013.072686
Lukovych, Y.S., Popovych, A.I., Kovbasnyuk, M.M., Korolyshyn, T.A., Barylyak, L.G., & Poipovych, I.L. (2015). Neuroendocrine and immune support of the diuretic effect of balneotherapy at the Truskavets resort [in Ukrainian]. Pochki. Nyrky, 2(12), 7-14.
Popovych, I.L., Gozhenko, A.I., Korda, M.M., Klishch, I.M., Popovych, D.V., & Zukow, W. (editors). (2022). Mineral Waters, Metabolism, Neuro-Endocrine-Immune Complex. Odesa: Feniks.
Popovych, I. L., Kozyavkina, O. V., Kozyavkina, N. V., Korolyshyn, T. A., Lukovych, Y. S., & Barylyak, L. G. (2014). Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology, 46(2), 139-148. https://doi.org/10.1007/s11062-014-9420-y
Popovych, I.L., Lukovych, Yu.S., Korolyshyn, T.A, Barylyak, L.G., Kovalska, L.B., Zukow, W. (2013). Relationship between the parameters heart rate variability and background EEG activity in healthy men. Journal of Health Sciences, 3(4), 217-240.
Ruzhylo, S., Żukow, X., Popovych, D., Zakalyak, N., Kovalchuk, H., Rohalya, Y., & Masnyi, O. (2024). Assessment of the rate of glomerular filtration by a non-invasive method. Journal of Education, Health and Sport, 68, 51613. https://doi.org/10.12775/JEHS.2024.68.51613
Hibatulloh A. and Ladesvita F. (2023). Relationship between blood pressure and multimorbidity with glomerular filtration rate (gfr) in patients with chronic renal failure. Jurnal Berita Ilmu Keperawatan, 16(1), 77-88. https://doi.org/10.23917/bik.v16i1.1485
Lin Y., Lai T., Lin S., Chen M., Chu T., & Tu Y. (2021). The impact of baseline glomerular filtration rate on subsequent changes of glomerular filtration rate in patients with chronic kidney disease. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86955-z
Kuhnel L., Vu T., Wood S., Francis R., Trnka P., & Ellis R. (2023). Relationship between cortical and medullary thickness and glomerular filtration rate among living kidney donors. Internal Medicine Journal, 53(3), 431-435. https://doi.org/10.1111/imj.16033
Ghaith N., Malaeb B., Itani R., Alnafea M., & Faraj A. (2021). Correlation of kidney size on computed tomography with gfr, creatinine and hba1c for an accurate diagnosis of patients with diabetes and/or chronic kidney disease. Diagnostics, 11(5), 789. https://doi.org/10.3390/diagnostics11050789
Chan M., Yeung W., Yu J., Ng S., & Tong K. (2022). Exploratory study on the clinical use of eeg for the people with chronic stroke and their correlation with the neuropsychological outcome. Clinical EEG and Neuroscience, 54(5), 534-548. https://doi.org/10.1177/15500594221074858
Bae M. (2023). Comparative analysis of the performance of electroencephalogram parameters for monitoring the depth of sedation during remimazolam target-controlled infusion. Anesthesia & Analgesia, 138(6), 1295-1303. https://doi.org/10.1213/ane.0000000000006718
Bree S., Sohoglu E., Davis M., & Zoefel B. (2021). Sustained neural rhythms reveal endogenous oscillations supporting speech perception. PLoS Biology, 19(2), e3001142. https://doi.org/10.1371/journal.pbio.3001142
Amaya V. (2023). Low-frequency deep brain stimulation reveals resonant beta-band evoked oscillations in the pallidum of Parkinson's disease patients. Frontiers in Human Neuroscience, 17. https://doi.org/10.3389/fnhum.2023.1178527
Xin Z. (2023). Brain response to interferential current compared with alternating current stimulation. Brain Sciences, 13(9), 1317. https://doi.org/10.3390/brainsci13091317
Liu H., Li Y., Zhou H., Chen W., Xu Y., Du H., et al. (2023). Renal nerve stimulation identifies renal innervation and optimizes the strategy for renal denervation in canine. Journal of Translational Medicine, 21(1). https://doi.org/10.1186/s12967-023-03919-9
Zhang F., Yang Y., Zheng Y., Wang P., & Xu K. (2021). Combination of matching responsive stimulations of hippocampus and subiculum for effective seizure suppression in temporal lobe epilepsy. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.638795
Zhong L., Wan J., Wu J., He S., Zhong X., Huang Z., et al. (2022). Temporal and spatial dynamic propagation of electroencephalogram by combining power spectral and synchronization in childhood absence epilepsy. Frontiers in Neuroinformatics, 16. https://doi.org/10.3389/fninf.2022.962466
Daud S., Sudirman R., & Norhafizah N. (2022). Electroencephalogram pattern under exposure of audio stimulation and verbal memory assessment. Journal of Medical Device Technology, 1(1), 38-44. https://doi.org/10.11113/jmeditec.v1n1.15
Meng X., Sun C., Du B., Liu L., Zhang Y., Dong Q., et al. (2021). The development of brain rhythms at rest and its impact on vocabulary acquisition. Developmental Science, 25(2). https://doi.org/10.1111/desc.13157
Leung L. and Chu L. (2021). Aberrant slow waves in the hippocampus during activation in mice with low cholinergic tone. Hippocampus, 31(11), 1233-1253. https://doi.org/10.1002/hipo.23387
Delgado-Sallent C., Nebot P., Gener T., Fath A., M T., & Puig M. (2021). Atypical, but not typical, antipsychotic drugs reduce hypersynchronized prefrontal-hippocampal circuits during psychosis-like states in mice: contribution of 5-ht2a and 5-ht1a receptors. Cerebral Cortex, 32(16), 3472-3487. https://doi.org/10.1093/cercor/bhab427
Sibilska S., Mofleh R., & Kocsis B. (2023). Development of network oscillations through adolescence in male and female rats. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1135154
Brusseau V., Tauveron I., Bagheri R., Ugbolue U., Magnon V., Navet V., et al. (2022). Heart rate variability in hypothyroid patients: a systematic review and meta-analysis. PLoS One, 17(6), e0269277. https://doi.org/10.1371/journal.pone.0269277
Rajan J. (2024). Relation between heart rate variability and spectral analysis of electroencephalogram in chronic neuropathic pain patients. Korean Journal of Physiology and Pharmacology, 28(3), 253-264. https://doi.org/10.4196/kjpp.2024.28.3.253
Korda, M., Gozhenko, A., Fihura, O., Popovych, D., Żukow, X. and Popovych, I. 2021. (2021). Relationships between plasma levels of main adaptogene hormones and eeg & hrv parameters at human with dysadaptation. Journal of Education Health and Sport, 11(12), 492-512. https://doi.org/10.12775/jehs.2021.11.12.040
Šečić D., Turohan A., Begić E., Rebić D., Pepic E., Begić Z., et al. (2022). Serum creatinine versus corrected cockcroft-gault equation according to poggio reference values in patients with arterial hypertension. International Journal of Applied and Basic Medical Research, 12(1), 9. https://doi.org/10.4103/ijabmr.ijabmr_301_21
Albanell-Fernández M., Bastida C., Fendian Á., Mercadal J., Rebollo P., & Soy-Muner D. (2023). Predictive performance of glomerular filtration rate equations based on cystatin c, creatinine and their combination in critically ill patients. European Journal of Hospital Pharmacy, ejhpharm-2023-003738. https://doi.org/10.1136/ejhpharm-2023-003738
Miano T. (2024). Toward equitable kidney function estimation in critical care practice: guidance from the society of critical care medicine's diversity, equity, and inclusion in renal clinical practice task force. Critical Care Medicine, 52(6), 951-962. https://doi.org/10.1097/ccm.0000000000006237
Ajčević M., Furlanis G., Miladinović A., Stella A., Caruso P., Ukmar M., et al. (2021). Early eeg alterations correlate with ctp hypoperfused volumes and neurological deficit: a wireless eeg study in hyper-acute ischemic stroke. Annals of Biomedical Engineering, 49(9), 2150-2158. https://doi.org/10.1007/s10439-021-02735-w
Font-Clos F., Spelta B., D'Agostino A., Donati F., Sarasso S., Canevini M., et al. (2021). Information optimized multilayer network representation of high density electroencephalogram recordings. Frontiers in Network Physiology, 1. https://doi.org/10.3389/fnetp.2021.746118
Li C., Wang Y., Li W., Yang Y., & Xia X. (2023). Measure functional network and cortical excitability in post-anoxic patients with unresponsive wakefulness syndrome diagnosed by behavioral scales. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1071594
Hodnik T. (2024). Beta--gamma phase-amplitude coupling as a non-invasive biomarker for Parkinson's disease: insights from electroencephalography studies. Life, 14(3), 391. https://doi.org/10.3390/life14030391
Hutcheon E., Vakorin V., Nunes A., Ribary U., Ferguson S., Claydon V., et al. (2023). Associations between spontaneous electroencephalogram oscillations and oxygen saturation across normobaric and hypobaric hypoxia. Human Brain Mapping, 44(6), 2345-2364. https://doi.org/10.1002/hbm.26214
Tozzi A. (2024). Approaching electroencephalographic pathological spikes in terms of solitons. Signals, 5(2), 281-295. https://doi.org/10.3390/signals5020015
Açıkgöz O. and Akinci S. (2023). The predictive value of donor renal functions, graft weight, recipient body mass index, and human leucocyte antigen match regarding early graft functions. Cureus. https://doi.org/10.7759/cureus.35438
Wang Y. (2024). Objective neurophysiological indices for the assessment of chronic tinnitus based on eeg microstate parameters. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 983-993. https://doi.org/10.1109/tnsre.2024.3367982
Hibatulloh A. and Ladesvita F. (2023). Relationship between blood pressure and multimorbidity with glomerular filtration rate (gfr) in patients with chronic renal failure. Jurnal Berita Ilmu Keperawatan, 16(1), 77-88. https://doi.org/10.23917/bik.v16i1.1485
Lin Y., Lai T., Lin S., Chen M., Chu T., & Tu Y. (2021). The impact of baseline glomerular filtration rate on subsequent changes of glomerular filtration rate in patients with chronic kidney disease. Scientific Reports, 11(1). https://doi.org/10.1038
Pervez S., Anjum M., Bibi S., Kulsoom S., Hussain W., & Naeem B. (2022). Correlation of glomerular filtration rate (gfr) estimation formulae with measured gfr in pediatric oncology patients. Journal of Ayub Medical College Abbottabad, 34(4)(SUPPL 1), 964-968. https://doi.org/10.55519/jamc-04-s4-10133
Ishii R. (2024). Renal hemodynamic and functional changes in patients with adpkd. Kidney360, 5(5), 724-731. https://doi.org/10.34067/kid.0000000000000412
Gadekar K. (2024). A single-center study on the clinical profiles and ultrasonographic assessments of living kidney donors in the marathwada region of maharashtra. Cureus. https://doi.org/10.7759/cureus.53293
Buus N., Nielsen C., Skov K., Ibsen L., Krag S., & Nyengaard J. (2022). Prediction of renal function in living kidney donors and recipients of living donor kidneys using quantitative histology. Transplantation, 107(1), 264-273. https://doi.org/10.1097/tp.0000000000004266
Açıkgöz O. and Akinci S. (2023). The predictive value of donor renal functions, graft weight, recipient body mass index, and human leucocyte antigen match regarding early graft functions. Cureus. https://doi.org/10.7759/cureus.35438
Végh A., Bárczi A., Cseprekál O., Kis É., Kelen K., Török S., et al. (2021). Follow-up of blood pressure, arterial stiffness, and gfr in pediatric kidney transplant recipients. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.800580
Günes-Altan M. (2024). Is gfr decline induced by sglt2 inhibitor of clinical importance?. Cardiovascular Diabetology, 23(1). https://doi.org/10.1186/s12933-024-02223-0
Rabrenović D. (2024). Metabolic syndrome in patients with lupus nephritis. Journal of Medical Biochemistry. https://doi.org/10.5937/jomb0-45732
Sharma A., Patidar V., Jadon H., Tripathi A., & Gaur A. (2022). A cross-sectional study on the evaluation of thyroid hormone levels and lipid profile in chronic kidney disease patients and to establish their correlation with disease severity. International Journal of Medical Arts, 0(0), 0-0. https://doi.org/10.21608/ijma.2022.138205.1455
Kim J., Kim H., Kang J., Lee E., Chung C., Oh H., et al. (2023). Glomerular filtration barrier modeling on a chip with tunable basement membrane deposition and 3d cultured podocytes. Lab on a Chip, 23(15), 3501-3517. https://doi.org/10.1039/d3lc00147d
Fallara G., Capogrosso P., Pozzi E., Belladelli F., Cilio S., Créveuli C., et al. (2023). Kidney function impairment in men with primary infertility: a case--control analysis. Andrology, 11(7), 1377-1385. https://doi.org/10.1111/andr.13425
Marušić J. (2024). Correlation of pre-existing comorbidities with disease severity in individuals infected with sars-cov-2 virus. BMC Public Health, 24(1). https://doi.org/10.1186/s12889-024-18457-2
Djorwé S. (2024). Impact and prevalence of comorbidities and complications on the severity of covid-19 in association with age, gender, obesity, and pre-existing smoking: a meta-analysis. Biomedicine, 14(1). https://doi.org/10.37796/2211-8039.1429
Sharafutdinov K., Fritsch S., Marx G., Bickenbach J., & Schuppert A. (2021). Biometric covariates and outcome in covid-19 patients: are we looking close enough?. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-06823-z
Indrayan A. and Mishra A. (2021). The importance of small samples in medical research. Journal of Postgraduate Medicine, 67(4), 219-223. https://doi.org/10.4103/jpgm.jpgm_230_21
Bottesini J. (2023). How do science journalists evaluate psychology research?. Advances in Methods and Practices in Psychological Science, 6(3). https://doi.org/10.1177/25152459231183912
Kidokoro K., Kadoya H., Cherney D., Kondo M., Wada Y., Umeno R., et al. (2023). Insights into the regulation of gfr by the keap1-nrf2 pathway. Kidney360, 4(10), 1454-1466. https://doi.org/10.34067/kid.0000000000000171
Shah P., Jeyaseelan L., Soundararajan P., & Sathiyasekaran B. (2021). Comparative assessment of glomerular filtration rate (gfr) google apps and ckd prepare gfr india google app. Journal of Pharmaceutical Research International, 63-69. https://doi.org/10.9734/jpri/2021/v33i231148
McMeekin H., Townrow S., Barnfield M., Bradley A., Fongenie B., McGowan D., et al. (2022). Tailoring the sampling time of single-sample gfr measurement according to expected renal function: a multisite audit. EJNMMI Physics, 9(1). https://doi.org/10.1186/s40658-022-00500-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sofiya Ruzhylo, Dariya Popovych, Viktor Duzhar, Xawery Żukow, Nataliya Zakalyak, Halyna Kovalchuk, Yuriy Rohalya, Oleg Masnyi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 100
Number of citations: 0