The use of stem cells in the treatment of diabetes mellitus and its complications - review
DOI:
https://doi.org/10.12775/JEHS.2024.74.51736Keywords
diabetes mellitus, stem cells, diabetes complicationsAbstract
Introduction and purpose
Diabetes is a disease resulting from impaired action or secretion of insulin. The number of patients currently amounts to approximately 422 million, and approximately 1.5 million deaths per year are directly attributed to this disease. Diabetes significantly reduces the quality of life and, if poorly controlled, can lead to serious complications. Mesenchymal stem cells are multipotent cells capable of differentiation. They have the ability to self-renew and have a modulating function. There are reports that they can be used in the treatment of this disease. The aim of the review was to present a new method of therapy and their possible effects.
Material and methods
The review was based on articles obtained from PubMed scientific database in the years 2015-2023, using the following keywords: diabetes mellitus, stem cells, diabetes complications.
Results
Implanted stem cells are able to transform into cells that produce and secrete insulin, and also enable better glycemic control. They can alleviate chronic inflammation and reduce fibrosis. Taking into account the complications that occur during long-term diabetes, the use of stem cells may be associated with improving the function of specific organs and tissues such as the kidneys, heart, eyes and nerves. Studies also report a positive effect of these cells on the healing process of wounds and ulcers.
Conclusions
Stem cells are a promising object of analysis. They can control glycemia and have a positive effect on the functioning of the kidneys, heart, eyes and nerves, and accelerate wound healing, but further, extensive research is needed to assess the effectiveness and safety of this therapy.
References
Kanter JE, Bornfeldt KE. Impact of Diabetes Mellitus. Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1049-53. doi: 10.1161/ATVBAHA.116.307302.
www.who.int/health-topics/diabetes#tab=tab_1 (access 20/04/2024)
Żuchnik, M., Rybkowska, A., Szczuraszek, P., Szczuraszek, H., Bętkowska, P., Radulski, J., Tomkiewicz, M., Paluch, M., Licak, G., Olko, P. (2023). Type 2 diabetes-factors of occurrence and its complications. Quality in Sport, 10(1), 32-40. https://doi.org/10.12775/QS.2023.10.01.003
Chikitkina, O. M., Kononenko, N. M., Chikitkina, V. V., & Lar’yanovskaya, Y. B. (2015). Antidiabetic action of combined medicine glikverin in terms of experimental Diabetes Mellitus type 2. Pedagogy and Psychology of Sport, 1(2), 11-22. https://doi.org/10.12775/PPS.2015.01.02.001
Papatheodorou K, Banach M, Edmonds M et al. Complications of Diabetes. J Diabetes Res. 2015;2015:189525. doi: 10.1155/2015/189525.
www.mp.pl/interna/chapter/B16.II.13.1. (access 20/04/2024)
Łopuszyńska, A. M., Pawlicki, M., Kozioł, M., Krasa, A., Piekarska, E., Piecewicz-Szczęsna, H. (2021). Anti-aging properties of metformin. Journal of Education, Health and Sport, 11(9), 37-42. https://doi.org/10.12775/JEHS.2021.11.09.005
Mishra VK, Shih HH, Parveen F et al. Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells. 2020 May 6;9(5):1145. doi: 10.3390/cells9051145.
l-Sherbiny M, Eladl MA, Ranade AV et al. Functional beta-cells derived from umbilical cord blood mesenchymal stem cells for curing rats with streptozotocin-induced diabetes mellitus. Singapore Med J. 2020 Jan;61(1):39-45. doi: 10.11622/smedj.2019120.
Xue B, Xiao X, Yu T et al. Mesenchymal stem cells modified by FGF21 and GLP1 ameliorate lipid metabolism while reducing blood glucose in type 2 diabetic mice. Stem Cell Res Ther. 2021 Feb 15;12(1):133. doi: 10.1186/s13287-021-02205-z.
Shapiro AMJ, Thompson D, Donner TW et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med. 2021 Dec 2;2(12):100466. doi: 10.1016/j.xcrm.2021.100466.
Izadi M, Sadr Hashemi Nejad A, Moazenchi M et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther. 2022 Jun 20;13(1):264. doi: 10.1186/s13287-022-02941-w.
Mesples AD, Cox DCT, Lundy HD et al. Monitoring of Autoantibodies Following Autologous Hematopoietic Stem Cell Transplantation in 6 Children with Recently Diagnosed Type 1 Diabetes Mellitus. Med Sci Monit. 2023 Jan 20;29:e938979. doi: 10.12659/MSM.938979.
Lian XF, Lu DH, Liu HL et al. Effectiveness and safety of human umbilical cord-mesenchymal stem cells for treating type 2 diabetes mellitus. World J Diabetes. 2022 Oct 15;13(10):877-887. doi: 10.4239/wjd.v13.i10.877.
Zang L, Li Y, Hao H et al. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther. 2022 May 3;13(1):180. doi: 10.1186/s13287-022-02848-6.
Nguyen LT, Hoang DM, Nguyen KT et al. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl Med. 2021 Sep;10(9):1266-1278. doi: 10.1002/sctm.20-0506.
Samsu N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed Res Int 2021 Jul 8;2021:1497449. doi: 10.1155/2021/1497449.
Xiang E, Han B, Zhang Q et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther. 2020 Aug 3;11(1):336. doi: 10.1186/s13287-020-01852-y.
Xiong G, Tao L, Ma WJ et al. Urine-derived stem cells for the therapy of diabetic nephropathy mouse model. Eur Rev Med Pharmacol Sci. 2020 Feb;24(3):1316-1324. doi: 10.26355/eurrev_202002_20189.
Feldman EL, Callaghan BC, Pop-Busui R et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019 Jun 13;5(1):42. doi: 10.1038/s41572-019-0097-9.
Fan B, Li C, Szalad A et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetology. 2020 Feb;63(2):431-443. doi: 10.1007/s00125-019-05043-0.
Reardon R, Simring D, Kim B et al. The diabetic foot ulcer. Aust J Gen Pract. 2020 May;49(5):250-255. doi: 10.31128/AJGP-11-19-5161.
Vadiveloo T, Jeffcoate W, Donnan PT et al. Scottish Diabetes Research Network Epidemiology Group. Amputation-free survival in 17,353 people at high risk for foot ulceration in diabetes: a national observational study. Diabetology. 2018 Dec;61(12):2590-2597. doi: 10.1007/s00125-018-4723-y.
Li X, Xie X, Lian W et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018 Apr 13;50(4):1-14. doi: 10.1038/s12276-018-0058-5.
An R, Zhang Y, Qiao Y et al. Adipose stem cells isolated from diabetic mice improve cutaneous wound healing in streptozotocin-induced diabetic mice. Stem Cell Res Ther. 2020 Mar 17;11(1):120. doi: 10.1186/s13287-020-01621-x.
Yang J, Chen Z, Pan D et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int J Nanomedicine. 2020 Aug 11;15:5911-5926. doi: 10.2147/IJN.S249129.
Uzun E, Güney A, Gönen ZB et al. Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: Phase I/2 safety study. Foot Ankle Surg. 2021 Aug;27(6):636-642. doi: 10.1016/j.fas.2020.08.002.
Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res. 2017 Oct;139:7-14. doi: 10.1016/j.visres.2017.04.003.
Rong L, Gu X, Xie J et al. Bone Marrow CD133+ Stem Cells Ameliorate Visual Dysfunction in Streptozotocin-induced Diabetic Mice with Early Diabetic Retinopathy. Cell Transplant. 2018 Jun;27(6):916-936. doi: 10.1177/0963689718759463.
Yazdanyar A, Zhang P, Dolf C et al. Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Exp Eye Res. 2020 Jan;190:107865. doi: 10.1016/j.exer.2019.107865.
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis. 2021 Apr 1;1867(4):166044. doi: 10.1016/j.bbadis.2020.166044.
Jin L, Zhang J, Deng Z et al. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther. 2020 Mar 17;11(1):122. doi: 10.1186/s13287-020-01633-7.
Yu S, Cheng Y, Zhang L et al. Treatment with adipose tissue-derived mesenchymal stem cells produces anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther. 2019 Nov 20;10(1):333. doi: 10.1186/s13287-019-1474-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Łukasz Ochyra, Anna Łopuszyńska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 695
Number of citations: 0