Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

AI and Lyme Disease: Pioneering Advances in Diagnostic Accuracy
  • Home
  • /
  • AI and Lyme Disease: Pioneering Advances in Diagnostic Accuracy
  1. Home /
  2. Archives /
  3. Vol. 73 (2024) /
  4. Medical Sciences

AI and Lyme Disease: Pioneering Advances in Diagnostic Accuracy

Authors

  • Patrycja Dębiec Medical University of Silesia, Faculty of Medical Sciences in Katowice, 18 Medyków St., 40-752 Katowice, Poland https://orcid.org/0009-0003-0853-2247
  • Jakub Roman Medical University of Silesia, Faculty of Medical Sciences in Katowice, 18 Medyków St., 40-752 Katowice, Poland https://orcid.org/0009-0005-6032-7579
  • Daniel Gondko Medical University of Silesia, Faculty of Medical Sciences in Katowice, 18 Medyków St., 40-752 Katowice, Poland https://orcid.org/0009-0000-9590-2987
  • Nikodem Pietrzak Medical University of Silesia, Faculty of Medical Sciences in Katowice, 18 Medyków St., 40-752 Katowice, Poland https://orcid.org/0000-0002-6669-9876

DOI:

https://doi.org/10.12775/JEHS.2024.73.51697

Keywords

Artificial Intelligence, Lyme Disease, Machine Learning

Abstract

Introduction and Purpose: Accurate diagnosis of Lyme disease remains challenging due to its varied manifestations and the limitations of current diagnostic tests. This review examines the emerging role of artificial intelligence (AI) in enhancing the diagnostic accuracy for Lyme disease, aiming to understand how these technologies can be integrated into clinical practice.
State of Knowledge: AI and machine learning techniques are increasingly applied to improve diagnostic processes. In Lyme disease, AI models have been developed to identify patterns in clinical data, enhancing early detection and accuracy. Studies have focused on using AI to interpret complex serological results and clinical symptoms more effectively than traditional methods. Additionally, AI has been utilized to analyze geographical and epidemiological data to predict Lyme disease risk areas, aiding in preventive strategies.
Summary: AI holds significant promise in transforming Lyme disease diagnostics by increasing the speed and accuracy of detection. These technologies not only help in overcoming the limitations of current serological testing but also provide a framework for predictive analytics in epidemiology. As AI models continue to evolve, their integration into healthcare systems requires careful consideration of ethical implications and validation on broader scales. Future research should focus on refining AI algorithms, improving data inclusivity, and enhancing interoperability with existing medical systems to fully realize AI's potential in battling Lyme disease.

References

Boyce RM et al. Errors in Diagnostic Test Use and Interpretation Contribute to the High Number of Lyme Disease Referrals in a Low-Incidence State. Open Forum Infect Dis. 2020 Jan 11;7(1):ofaa009. doi: 10.1093/ofid/ofaa009. PMID: 31988970; PMCID: PMC6976340.

Berner ES, Graber ML. Overconfidence as a Cause of Diagnostic Error in Medicine. Am J Med. 2008;121(5):S2-S23. doi:10.1016/j.amjmed.2008.01.001

Ross Russell AL, Dryden M, Pinto AA, et alLyme disease: diagnosis and management Practical Neurology Published Online First: 03 October 2018. doi: 10.1136/practneurol-2018-001998

Reddy, Panga Jaipal et al. “Borrelia Peptide Atlas: A proteome resource of common Borrelia burgdorferi isolates for Lyme research.” bioRxiv : the preprint server for biology 2023.06.16.545244. 16 Jun. 2023, doi:10.1101/2023.06.16.545244. Preprint.

Bamm, Vladimir V et al. “Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums.” Pathogens (Basel, Switzerland) vol. 8,4 299. 16 Dec. 2019, doi:10.3390/pathogens8040299

Eugene D. Shapiro, Michael A. Gerber, Lyme Disease, Clinical Infectious Diseases, Volume 31, Issue 2, August 2000, Pages 533–542, https://doi.org/10.1086/313982

Tatum, Randi. and Anthony L. Pearson-Shaver. “Borrelia Burgdorferi.” StatPearls, StatPearls Publishing, 17 July 2023.

Steere, Allen C et al. “Lyme borreliosis.” Nature reviews. Disease primers vol. 2 16090. 15 Dec. 2016, doi:10.1038/nrdp.2016.90

Wong, Katelyn H et al. “A Review of Post-treatment Lyme Disease Syndrome and Chronic Lyme Disease for the Practicing Immunologist.” Clinical reviews in allergy & immunology vol. 62,1 (2022): 264-271. doi:10.1007/s12016-021-08906-w

David R. Snydman, Lyme disease, Medicine, Volume 45, Issue 12, 2017, Pages 743-746, ISSN 1357-3039, https://doi.org/10.1016/j.mpmed.2017.09.005.

Baker, Phillip J. “Is It Possible to Make a Correct Diagnosis of Lyme Disease on Symptoms Alone? Review of Key Issues and Public Health Implications.” The American journal of medicine vol. 132,10 (2019): 1148-1152. doi:10.1016/j.amjmed.2019.04.001

Bratton, Robert L et al. “Diagnosis and treatment of Lyme disease.” Mayo Clinic proceedings vol. 83,5 (2008): 566-71. doi:10.4065/83.5.566

Schoen, Robert T. “Lyme disease: diagnosis and treatment.” Current opinion in rheumatology vol. 32,3 (2020): 247-254. doi:10.1097/BOR.0000000000000698

Branda, John A, and Allen C Steere. “Laboratory Diagnosis of Lyme Borreliosis.” Clinical microbiology reviews vol. 34,2 e00018-19. 27 Jan. 2021, doi:10.1128/CMR.00018-19

Hatchette, T F et al. “Lyme disease: clinical diagnosis and treatment.” Canada communicable disease report = Releve des maladies transmissibles au Canada vol. 40,11 194-208. 29 May. 2014, doi:10.14745/ccdr.v40i11a01

Kobayashi et al. “Diagnostic Testing for Lyme Disease.” Infectious disease clinics of North America vol. 36,3 (2022): 605-620. doi:10.1016/j.idc.2022.04.001

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71. PMID: 33782057; PMCID: PMC8005924.

Forrest, Iain S et al. “Cholesterol Contributes to Risk, Severity, and Machine Learning-Driven Diagnosis of Lyme Disease.” Clinical infectious diseases : an official publication of the Infectious Diseases Society of America vol. 77,6 (2023): 839-847. doi:10.1093/cid/ciad307

Boligarla, S., Laison, E.K.E., Li, J. et al. Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter. BMC Med Inform Decis Mak 23, 217 (2023). https://doi.org/10.1186/s12911-023-02315-z

Donta, Sam T. “Issues in the diagnosis and treatment of lyme disease.” The open neurology journal vol. 6 (2012): 140-5. doi:10.2174/1874205X01206010140

Elkhadrawi, Mahmoud et al. “Improving Lyme disease testing with data driven test design in pediatrics.” Journal of pathology informatics vol. 14 100300. 16 Feb. 2023, doi:10.1016/j.jpi.2023.100300

Marques, Adriana R et al. “Comparison of Lyme Disease in the United States and Europe.” Emerging infectious diseases vol. 27,8 (2021): 2017-2024. doi:10.3201/eid2708.204763

Ichikawa, Osamu et al. “Lyme Disease Patient Trajectories Learned from Electronic Medical Data for Stratification of Disease Risk and Therapeutic Response.” Scientific reports vol. 9,1 4460. 14 Mar. 2019, doi:10.1038/s41598-019-41128-x

Radesich, Cinzia et al. “Lyme Carditis: From Pathophysiology to Clinical Management.” Pathogens (Basel, Switzerland) vol. 11,5 582. 15 May. 2022, doi:10.3390/pathogens11050582

Govil, Swati et al. “Common Neurologic Features of Lyme Disease That May Present to a Rheumatologist.” Pathogens (Basel, Switzerland) vol. 12,4 576. 9 Apr. 2023, doi:10.3390/pathogens12040576

Bobe, Jason R et al. “Recent Progress in Lyme Disease and Remaining Challenges.” Frontiers in medicine vol. 8 666554. 18 Aug. 2021, doi:10.3389/fmed.2021.666554

Garcia-Marti, Irene et al. “Modelling tick bite risk by combining random forests and count data regression models.” PloS one vol. 14,12 e0216511. 10 Dec. 2019, doi:10.1371/journal.pone.0216511

Zhang, Yudong et al. “An MR brain images classifier system via particle swarm optimization and kernel support vector machine.” TheScientificWorldJournal vol. 2013 130134. 16 Sep. 2013, doi:10.1155/2013/130134

Laison, Elda Kokoe Elolo et al. “Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis.” Journal of medical Internet research vol. 25 e47014. 16 Oct. 2023, doi:10.2196/47014

Joung, Hyou-Arm et al. “Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease Using a Multiplexed Paper-Based Immunoassay and Machine Learning.” ACS nano vol. 14,1 (2020): 229-240. doi:10.1021/acsnano.9b08151

Servellita, V., Bouquet, J., Rebman, A. et al. A diagnostic classifier for gene expression-based identification of early Lyme disease. Commun Med 2, 92 (2022). https://doi.org/10.1038/s43856-022-00127-2

Downloads

  • PDF

Published

2024-06-03

How to Cite

1.
DĘBIEC, Patrycja, ROMAN, Jakub, GONDKO, Daniel and PIETRZAK, Nikodem. AI and Lyme Disease: Pioneering Advances in Diagnostic Accuracy. Journal of Education, Health and Sport. Online. 3 June 2024. Vol. 73, p. 51697. [Accessed 20 May 2025]. DOI 10.12775/JEHS.2024.73.51697.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 73 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Patrycja Dębiec, Jakub Roman, Daniel Gondko, Nikodem Pietrzak

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 513
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Artificial Intelligence, Lyme Disease, Machine Learning
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop