Garlic (Allium sativum L.): A review of varied health benefits
DOI:
https://doi.org/10.12775/JEHS.2024.72.51512Keywords
garlic, Allium sativum L., anti-inflammatory, allicin, antioxidant, anticancerAbstract
Introduction:
Garlic (Allium sativum L.), has been cultivated in various countries and is valued for its medicinal and culinary properties. It contains bioactive compounds such as phenolic compounds, organic sulfides, polysaccharides, and saponins, with allicin being a particularly studied compound. These compounds have been shown to possess antioxidant, antimicrobial, antiviral, anticancer, anti-inflammatory, anti-hyperlipidemic and antihypertensive effects. Garlic has been used for over 5000 years as a curative plant and has potential applications in food science, medicine, and nutraceuticals.
Aim of the Study:
The aim of the study is to provide a comprehensive review of the overall impact of Allium sativum L. on human health and in order to draw attention to the benefits of regular consumption.
Materials and methods:
A comprehensive review of scientific and medical literature was conducted utilizing PubMed and Google Scholar databases. Searching terms were: garlic, Allium sativum L., garlic anti-inflammatory, garlic anticancer, garlic health effects.
Conclusion:
Allium sativum L. is associated with a comprehensive range of beneficial effects on the human body. These include anti-inflammatory and antioxidant properties, positive influence on lipid profile, cardiovascular system, and the anticancer activity among others by stimulation of tumor apoptosis. As a result, garlic and its bioactive compounds hold promise as functional foods or nutraceuticals for the prevention and treatment of various diseases.
References
Tudu CK, Dutta T, Ghorai M, Biswas P, Samanta D, Oleksak P, Jha NK, Kumar M, Radha, Proćków J, Pérez de la Lastra JM, Dey A. Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front Nutr. 2022 Oct 28;9:949554. doi: 10.3389/fnut.2022.929554. PMID: 36386956; PMCID: PMC9650110.
Subroto E, Cahyana Y, Tensiska M, Lembong F, Filianty E, Kurniati E, Wulandari D, Saputra R, Faturachman F. Bioactive compounds in garlic (Allium sativum L.) as a source of antioxidants and its potential to improve the immune system: a review. Food Research. 2021 Dec;5(6):1-1.
Mondal A, Banerjee S, Bose S, et al. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res. 2022;175:105837. doi:10.1016/j.phrs.2021.105837
Bose S, Laha B, Banerjee S. Quantification of allicin by high performance liquid chromatography-ultraviolet analysis with effect of post-ultrasonic sound and microwave radiation on fresh garlic cloves. Pharmacogn Mag. 2014;10(Suppl 2):S288-S293. doi:10.4103/0973-1296.133279
Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O. Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules. 2017;22(8):1359. Published 2017 Aug 20. doi:10.3390/molecules22081359
Szychowski KA, Rybczynska-Tkaczyk K, Gawel-Beben K, Swieca M, Karas M, Jakuczyk A, Matysiak M, Binduga UE, Gminski J. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Polish Journal of Food and Nutrition Sciences. 2018;68(1).
Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V, Li H-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. 2019; 8(7):246. https://doi.org/10.3390/foods8070246
Yoo DY, Kim W, Nam SM, et al. Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem Toxicol. 2014;72:1-7. doi:10.1016/j.fct.2014.06.023
Mansingh DP, Dalpati N, Sali VK, Vasanthi AH. Alliin the precursor of allicin in garlic extract mitigates proliferation of gastric adenocarcinoma cells by modulating apoptosis. Pharmacognosy Magazine. 2018;14(55s).
Lee DY, Li H, Lim HJ, Lee HJ, Jeon R, Ryu JH. Anti-inflammatory activity of sulfur-containing compounds from garlic. J Med Food. 2012;15(11):992-999. doi:10.1089/jmf.2012.2275
Hayat S, Cheng Z, Ahmad H, Ali M, Chen X, Wang M. Garlic, from Remedy to Stimulant: Evaluation of Antifungal Potential Reveals Diversity in Phytoalexin Allicin Content among Garlic Cultivars; Allicin Containing Aqueous Garlic Extracts Trigger Antioxidants in Cucumber. Front Plant Sci. 2016;7:1235. Published 2016 Aug 25. doi:10.3389/fpls.2016.01235
Lee HS, Lim WC, Lee SJ, Lee SH, Lee JH, Cho HY. Antiobesity Effect of Garlic Extract Fermented by Lactobacillus plantarum BL2 in Diet-Induced Obese Mice. J Med Food. 2016;19(9):823-829. doi:10.1089/jmf.2016.3674
Yun HM, Ban JO, Park KR, et al. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther. 2014;142(2):183-195.
doi:10.1016/j.pharmthera.2013.12.005
Percival SS. Aged Garlic Extract Modifies Human Immunity. J Nutr. 2016;146(2):433S-436S. doi:10.3945/jn.115.210427
Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V, Li H-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. 2019; 8(7):246. https://doi.org/10.3390/foods8070246
Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O. Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules. 2017;22(8):1359. Published 2017 Aug 20. doi:10.3390/molecules22081359
Bradley JM, Organ CL, Lefer DJ. Garlic-Derived Organic Polysulfides and Myocardial Protection. J Nutr. 2016;146(2):403S-409S. doi:10.3945/jn.114.208066
Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V, Li H-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. 2019; 8(7):246. https://doi.org/10.3390/foods8070246
Butt MS, Sultan MT, Butt MS, Iqbal J. Garlic: nature's protection against physiological threats. Critical reviews in food science and nutrition. 2009 Jun 16;49(6):538-51.
Yoo DY, Kim W, Nam SM, et al. Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem Toxicol. 2014;72:1-7. doi:10.1016/j.fct.2014.06.023
Yoo M, Lee S, Kim S, Hwang JB, Choe J, Shin D. Composition of organosulfur compounds from cool-and warm-type garlic (Allium sativum L.) in Korea. Food Science and Biotechnology. 2014 Apr;23:337-44.
Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V, Li H-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. 2019; 8(7):246. https://doi.org/10.3390/foods8070246
El-Saber Batiha G, Magdy Beshbishy A, G. Wasef L, Elewa YHA, A. Al-Sagan A, Abd El-Hack ME, Taha AE, M. Abd-Elhakim Y, Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020; 12(3):872. https://doi.org/10.3390/nu12030872
Zeng Y, Li Y, Yang J, Pu X, Du J, Yang X, Yang T, Yang S. Therapeutic role of functional components in alliums for preventive chronic disease in human being. Evidence-Based Complementary and Alternative Medicine. 2017 Oct;2017.
Ilić DP, Stojanović S, Najman S, et al. Biological evaluation of synthesized allicin and its transformation products obtained by microwaves in methanol: antioxidant activity and effect on cell growth. Biotechnol Biotechnol Equip. 2015;29(1):189-194. doi:10.1080/13102818.2014.994267
Thomson M, Ali M. Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets. 2003;3(1):67-81. doi:10.2174/1568009033333736
Kuda T, Iwai A, Yano T. Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow. Food Chem Toxicol. 2004;42(10):1695-1700. doi:10.1016/j.fct.2004.06.007
Yun HM, Ban JO, Park KR, et al. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther. 2014;142(2):183-195. doi:10.1016/j.pharmthera.2013.12.005
Torres-Palazzolo C, Ramirez D, Locatelli D, Manucha W, Castro C, Camargo A. Bioaccessibility and permeability of bioactive compounds in raw and cooked garlic. Journal of Food Composition and Analysis. 2018 Jul 1;70:49-53.
Lanzotti V, Bonanomi G, Scala F. What makes Allium species effective against pathogenic microbes?. Phytochemistry reviews. 2013 Dec;12:751-72.
Liu J, Ji F, Chen F, et al. Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry. J Pharm Biomed Anal. 2018;159:513-523. doi:10.1016/j.jpba.2018.07.020
Asdaq SM, Inamdar MN. Pharmacodynamic and Pharmacokinetic Interactions of Propranolol with Garlic (Allium sativum) in Rats. Evid Based Complement Alternat Med. 2011;2011:824042. doi:10.1093/ecam/neq076
Shokrzadeh M, Ebadi AG. Antibacterial effect of garlic (Allium sativum L.) on Staphylococcus aureus.
Locatelli DA, Nazareno MA, Fusari CM, Camargo AB. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem. 2017;220:219-224. doi:10.1016/j.foodchem.2016.10.001
Locatelli DA, Nazareno MA, Fusari CM, Camargo AB. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem. 2017;220:219-224. doi:10.1016/j.foodchem.2016.10.001
Gruhlke MC, Nwachwukwu I, Arbach M, Anwar A, Noll U, Slusarenko AJ. Allicin from garlic, effective in controlling several plant diseases, is a reactive sulfur species (RSS) that pushes cells into apoptosis.
Shang A, Cao SY, Xu XY, et al. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. 2019;8(7):246. Published 2019 Jul 5. doi:10.3390/foods8070246
Ide N, Lau BH. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J Nutr. 2001;131(3s):1020S-6S. doi:10.1093/jn/131.3.1020S
Ho SE, Ide N, Lau BH. S-allyl cysteine reduces oxidant load in cells involved in the atherogenic process. Phytomedicine. 2001;8(1):39-46. doi:10.1078/0944-7113-00005
Dirsch VM, Kiemer AK, Wagner H, Vollmar AM. Effect of allicin and ajoene, two compounds of garlic, on inducible nitric oxide synthase. Atherosclerosis. 1998;139(2):333-339. doi:10.1016/s0021-9150(98)00094-x
Rabe SZ, Ghazanfari T, Siadat Z, Rastin M, Rabe SZ, Mahmoudi M. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages. Immunopharmacol Immunotoxicol. 2015;37(2):158-164. doi:10.3109/08923973.2015.1005229
Morihara N, Hino A, Miki S, Takashima M, Suzuki JI. Aged garlic extract suppresses inflammation in apolipoprotein E-knockout mice. Mol Nutr Food Res. 2017;61(10):10.1002/mnfr.201700308. doi:10.1002/mnfr.201700308
Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020 Oct;104:219-234. doi: 10.1016/j.tifs.2020.08.006. Epub 2020 Aug 19. PMID: 32836826; PMCID: PMC7434784.
Fashner J, Ericson K, Werner S. Treatment of the common cold in children and adults. Am Fam Physician. 2012 Jul 15;86(2):153-9. PMID: 22962927.
Gökalp F. The inhibition effect of garlic-derived compounds on human immunodeficiency virus type 1 and saquinavir. J Biochem Mol Toxicol. 2018 Nov;32(11):e22215. doi: 10.1002/jbt.22215. Epub 2018 Sep 8. PMID: 30194790.
Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses. 2017 Jun 23;9(7):159. doi: 10.3390/v9070159. PMID: 28644404; PMCID: PMC5537651.
Asdaq SM, Inamdar MN. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine. 2010;17(13):1016-1026. doi:10.1016/j.phymed.2010.07.012
Sausbier M, Schubert R, Voigt V, et al. Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res. 2000;87(9):825-830. doi:10.1161/01.res.87.9.825
Cruz C, Correa-Rotter R, Sánchez-González DJ, Hernández-Pando R, Maldonado PD, Martínez-Martínez CM, Medina-Campos ON, Tapia E, Aguilar D, Chirino YI, Pedraza-Chaverri J. Renoprotective and antihypertensive effects of S-allylcysteine in 5/6 nephrectomized rats. American Journal of Physiology-Renal Physiology. 2007 Nov;293(5):F1691-8.
Takashima M, Kanamori Y, Kodera Y, Morihara N, Tamura K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine. 2017;24:56-61. doi:10.1016/j.phymed.2016.11.016
Park BM, Cha SA, Kim HY, Kang DK, Yuan K, Chun H, Chae SW, Kim SH. Fermented garlic extract decreases blood pressure through nitrite and sGC-cGMP-PKG pathway in spontaneously hypertensive rats. Journal of functional foods. 2016 Apr 1;22:156-65.
Sohn CW, Kim H, You BR, Kim MJ, Kim HJ, Lee JY, Sok DE, Kim JH, Lee KJ, Kim MR. High temperature-and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets. Journal of Medicinal Food. 2012 May 1;15(5):435-40.
Siddiqui NA, Haider S, Misbah-ur-Rehman M, Perveen T. Role of herbal formulation of garlic on lipid profile in patients with type 2 diabetes related dyslipidemia. Pakistan Heart Journal. 2016;49(4).
Jain AK, Vargas R, Gotzkowsky S, McMahon FG. Can garlic reduce levels of serum lipids? A controlled clinical study. Am J Med. 1993;94(6):632-635. doi:10.1016/0002-9343(93)90216-c
Zhang Y, Liu X, Ruan J, Zhuang X, Zhang X, Li Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed Pharmacother. 2020;123:109730. doi:10.1016/j.biopha.2019.109730
De Greef D, Barton EM, Sandberg EN, et al. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol. 2021;73:219-264. doi:10.1016/j.semcancer.2020.11.020
Kim SH, Lee IC, Baek HS, et al. Mechanism for the protective effect of diallyl disulfide against cyclophosphamide acute urotoxicity in rats. Food Chem Toxicol. 2014;64:110-118. doi:10.1016/j.fct.2013.11.023
Liang D, Wu H, Wong MW, Huang D. Diallyl Trisulfide Is a Fast H2S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. Org Lett. 2015;17(17):4196-4199. doi:10.1021/acs.orglett.5b01962
Pandey P, Khan F, Alshammari N, Saeed A, Aqil F, Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front Pharmacol. 2023;14:1154034. Published 2023 Mar 20. doi:10.3389/fphar.2023.1154034
Tang H, Kong Y, Guo J, et al. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22 [published correction appears in Cancer Lett. 2021 Feb 1;498:253]. Cancer Lett. 2013;340(1):72-81. doi:10.1016/j.canlet.2013.06.027
Altonsy MO, Habib TN, Andrews SC. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr Cancer. 2012;64(8):1251-1260. doi:10.1080/01635581.2012.721156
Williams MM, Lee L, Werfel T, et al. Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers. Cell Death Dis. 2018;9(2):21. Published 2018 Jan 17. doi:10.1038/s41419-017-0072-x
Altonsy MO, Habib TN, Andrews SC. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr Cancer. 2012;64(8):1251-1260. doi:10.1080/01635581.2012.721156
Xie X, Huang X, Tang H, et al. Diallyl Disulfide Inhibits Breast Cancer Stem Cell Progression and Glucose Metabolism by Targeting CD44/PKM2/AMPK Signaling. Curr Cancer Drug Targets. 2018;18(6):592-599. doi:10.2174/1568009617666171024165657
Lee JE, Lee RA, Kim KH, Lee JH. Induction of apoptosis with diallyl disulfide in AGS gastric cancer cell line. J Korean Surg Soc. 2011;81(2):85-95. doi:10.4174
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Natalia Aleksandra Popławska, Justyna Śliz, Marta Skorupska, Magdalena Joanna Czeczotka, Krzysztof Woźniak
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 355
Number of citations: 0