Impact of physical activity on the development of Alzheimer's disease
DOI:
https://doi.org/10.12775/JEHS.2024.71.51112Keywords
Alzheimer's disease, dementia, physical activity, cerebral blood flow, gut-brain axis, irisinAbstract
Alzheimer's disease is the most common form of dementia and is a challenge for the modern world due to the due to aging populations. Researchers are trying their best to understand the mechanisms of onset and find effective ways to treat and prevent this disease. The purpose of the following paper is to present the impact of physical activity in the development of Alzheimer's disease. Numerous studies confirm that regular workouts have a positive reflection in the form of slowing the aging of the brain and alleviation of neuropsychiatric symptoms in affected individuals. During muscle work irisin is produced, which plays an important role in the formation of neurons and exhibits an anti-inflammatory effects. This review also looks at the aspect of maintaining proper composition of the gut microbiota, whose imbalance can promote the process of neuronal inflammation and cognitive dysfunction. Attention is also given to issues of training intensity and the effect of of exercise on blood flow in the brain. All of these elements play an important role in preventing and slowing down neurodegeneration.
References
Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther. 2016;8(1):23. Published 2016 Jul 30. https://doi.org:10.1186/s13195-016-0188-8
Dementia: a public health priority. (b. d.). World Health Organization (WHO).
httpss://www.who.int/publications/i/item/dementia-a-public-health-priority
Dos Santos Picanco LC, Ozela PF, de Fatima de Brito Brito M, et al. Alzheimer's Disease: A Review from the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment. Curr Med Chem. 2018;25(26):3141-3159. https://doi.org:10.2174/0929867323666161213101126
Rudnicka E, Napierała P, Podfigurna A, Męczekalski B, Smolarczyk R, Grymowicz M. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020;139:6-11. https://doi.org:10.1016/j.maturitas.2020.05.018
Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39(1):3-11. https://doi.org:10.1017/S0033291708003681
Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137-147. https://doi.org:10.1136/jnnp.66.2.137
Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-185. https://doi.org:10.1126/science.1566067
Aamodt EJ, Williams RC Jr. Microtubule-associated proteins connect microtubules and neurofilaments in vitro. Biochemistry. 1984;23(25):6023-6031. https://doi.org:10.1021/bi00320a019
Chakrabarty P, Jansen-West K, Beccard A, et al. Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 2010;24(2):548-559. https://doi.org:10.1096/fj.09-141754
El Khoury J, Hickman SE, Thomas CA, Loike JD, Silverstein SC. Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol Aging. 1998;19(1 Suppl):S81-S84. https://doi.org:10.1016/s0197-4580(98)00036-0
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature. 1996;382(6593):685-691. https://doi.org:10.1038/382685a0
Lee CY, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna). 2010;117(8):949-960. https://doi.org:10.1007/s00702-010-0433-4
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci. 2008;28(33):8354-8360. https://doi.org:10.1523/JNEUROSCI.0616-08.2008
Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int. 2013;2013:484613. https://doi.org:10.1155/2013/484613
Wee Yong V. Inflammation in neurological disorders: a help or a hindrance?. Neuroscientist.
;16(4):408-420. https://doi.org:10.1177/1073858410371379
Spirduso WW, Clifford P. Replication of age and physical activity effects on reaction and movement time. J Gerontol. 1978;33(1):26-30. https://doi.org:10.1093/geronj/33.1.26
Belviranlı M, Okudan N. Exercise Training Protects Against Aging-Induced Cognitive Dysfunction via Activation of the Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuromolecular Med. 2018;20(3):386-400. https://doi.org:10.1007/s12017-018-8500-3
Austin BP, Nair VA, Meier TB, et al. Effects of hypoperfusion in Alzheimer's disease. J Alzheimers Dis. 2011;26 Suppl 3(Suppl 3):123-133. https://doi.org:10.3233/JAD-2011-0010
Binnewijzend MA, Kuijer JP, Benedictus MR, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology. 2013;267(1):221-230. https://doi.org:10.1148/radiol.12120928
Benedictus MR, Leeuwis AE, Binnewijzend MA, et al. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer's disease. Eur Radiol. 2017;27(3):1169-1175. https://doi.org:10.1007/s00330-016-4450-z
Chao LL, Buckley ST, Kornak J, et al. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord. 2010;24(1):19-27. https://doi.org:10.1097/WAD.0b013e3181b4f736
Xekardaki A, Rodriguez C, Montandon ML, et al. Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology. 2015;274(2):490-499.
https://doi.org:10.1148/radiol.14140680
Hays CC, Zlatar ZZ, Wierenga CE. The Utility of Cerebral Blood Flow as a Biomarker of Preclinical Alzheimer's Disease. Cell Mol Neurobiol. 2016;36(2):167-179. https://doi.org:10.1007/s10571-015-0261-z
Orgeta V, Mukadam N, Sommerlad A, Livingston G. The Lancet Commission on Dementia Prevention, Intervention, and Care: a call for action. Ir J Psychol Med. 2019;36(2):85-88. https://doi.org:10.1017/ipm.2018.4
Buchman AS, Boyle PA, Yu L, Shah RC, Wilson RS, Bennett DA. Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology. 2012;78(17):1323-1329. https://doi.org:10.1212/WNL.0b013e3182535d35
Cott CA, Dawson P, Sidani S, Wells D. The effects of a walking/talking program on communication, ambulation, and functional status in residents with Alzheimer disease. Alzheimer Dis Assoc Disord. 2002;16(2):81-87. https://doi.org:10.1097/00002093-200204000-00005
Vital TM, Hernández SSS, Pedroso RV, et al. Effects of weight training on cognitive functions in elderly with Alzheimer's disease. Dement Neuropsychol. 2012;6(4):253-259. https://doi.org:10.1590/S1980-57642012DN06040009
Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71-79. https://doi.org:10.1001/archneurol.2009.307
Blumenthal JA, Smith PJ, Mabe S, et al. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology. 2019;92(3):e212-e223. https://doi.org:10.1212/WNL.0000000000006784
Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694-1704. https://doi.org:10.1016/j.apmr.2004.03.019
Yu F, Kolanowski AM, Strumpf NE, Eslinger PJ. Improving cognition and function through exercise intervention in Alzheimer's disease. J Nurs Scholarsh. 2006;38(4):358-365. https://doi.org:10.1111/j.1547-5069.2006.00127.x
Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial [published correction appears in J Am Med Dir Assoc. 2021 Feb;22(2):479-481]. J Am Med Dir Assoc. 2014;15(12):873-880. https://doi.org:10.1016/j.jamda.2014.09.010
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol.2015;14(4):388-405. https://doi.org:10.1016/S1474-4422(15)70016-5
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694-1697. https://doi.org:10.1126/science.1177486
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. https://doi.org:10.1038/nature08821
Dieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. Med Sci (Basel). 2018;6(4):116. Published 2018 Dec 14. https://doi.org:10.3390/medsci6040116
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965-977.
https://doi.org:10.1038/nn.4030
Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One. 2014;9(8):e103740. Published 2014 Aug 29. https://doi.org:10.1371/journal.pone.0103740
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565-576. https://doi.org:10.1016/j.chom.2015.04.011
Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe?. Mol Neurobiol.2017;54(10):8071-8089. https://doi.org:10.1007/s12035-016-0297-1
Opal SM. Endotoxins and other sepsis triggers. Contrib Nephrol. 2010;167:14-24. https://doi.org:10.1159/000315915
Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66. Published 2013 Dec 6. https://doi.org:10.1038/emm.2013.97
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. NeurobiolAging. 2017;49:60-68. https://doi.org:10.1016/j.neurobiolaging.2016.08.019
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer's disease. SciRep. 2017;7(1):13537. Published 2017 Oct 19. https://doi.org:10.1038/s41598-017-13601y
Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021;13(6):2099. Published 2021 Jun 19. https://doi.org:10.3390/nu13062099
Chen D, Yang X, Yang J, et al. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer's Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Front AgingNeurosci. 2017;9:403. Published 2017 Dec 8. https://doi.org:10.3389/fnagi.2017.00403
Matsumoto M, Inoue R, Tsukahara T, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008;72(2):572-576. https://doi.org:10.1271/bbb.70474
Estaki M, Pither J, Baumeister P, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42. Published 2016 Aug 8. https://doi.org:10.1186/s40168-016-0189-7
Cutuli D, Giacovazzo G, Decandia D, Coccurello R. Alzheimer's disease and depression in the elderly:A trajectory linking gut microbiota and serotonin signaling. Front Psychiatry. 2022;13:1010169. Published 2022 Nov 30. https://doi.org:10.3389/fpsyt.2022.1010169
Kulmala J, Solomon A, Kåreholt I, Ngandu T, Rantanen T, Laatikainen T, Soininen H, Tuomilehto J, Kivipelto M. Association between mid- to late life physical fitness and dementia: evidence from the CAIDE study. J Intern Med. 2014 Sep;276(3):296-307. https://doi.org: 10.1111/joim.12202. Epub 2014Apr 4. PMID: 24444031.
Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement Geriatr Cogn Disord. 2014;38(5-6):347-65. https://doi.org: 10.1159/000365388. Epub 2014 Aug 21.PMID: 25171577.
Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, Brændgaard H, Gottrup H, Lolk A, Wermuth L, Jacobsen S, Laugesen LP, Gergelyffy RG, Høgh P, Bjerregaard E, Andersen BB, Siersma V, Johannsen P, Cotman CW, Waldemar G, Hasselbalch SG. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease: A Randomized Controlled Trial. J Alzheimers Dis.2016;50(2):443-53. https://doi.org: 10.3233/JAD-150817. PMID: 26682695.
Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005 Aug 4;353(5):487-97. https://doi.org: 10.1056/NEJMra050100. PMID: 16079372.
Smith, A. (1982). Symbol Digit Modalities Test (SDMT). Manual (Revised). Los Angeles: Western Psychological Services.
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994 Dec;44(12):2308-14. https://doi.org: 10.1212/wnl.44.12.2308. PMID: 7991117.
Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE, Mehta PD, Craft S. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010 Jan;67(1):71-9. https://doi.org:10.1001/archneurol.2009.307. PMID: 20065132; PMCID: PMC3056436.
Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, Teodorov E, Santos-Galduróz RF. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. J Alzheimers Dis. 2014;39(2):401-8. https://doi.org: 10.3233/JAD-131073. PMID: 24164734.
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012 Jan 11;481(7382):463-8. https://doi.org: 10.1038/nature10777. PMID: 22237023; PMCID:PMC3522098.
Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience. 2013 Jun 14;240:155-62. https://doi.org.10.1016/j.neuroscience.2013.02.050. Epub 2013 Mar 5. PMID: 23470775; PMCID: PMC3637839.
Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab.2013 Nov 5;18(5):649-59. https://doi.org: 10.1016/j.cmet.2013.09.008. Epub 2013 Oct 10. PMID:24120943; PMCID: PMC3980968.
Wahab F., Khan I.U., Polo I.R., Zubair H., Drummer C., Shahab M., Behr R. Irisin in the Primate Hypothalamus and Its Effect on GnRH in Vitro. J. Endocrinol. 2019;241:175–187. https://doi.org: 10.1530/JOE-18-0574.
Gomes da Silva S, Unsain N, Mascó DH, Toscano-Silva M, de Amorim HA, Silva Araújo BH, Simões PS, Naffah-Mazzacoratti Mda G, Mortara RA, Scorza FA, Cavalheiro EA, Arida RM. Early exercise promotes positive hippocampal plasticity and improves spatial memory in the adult life of rats. Hippocampus. 2012 Feb;22(2):347-58. https://doi.org: 10.1002/hipo.20903. Epub 2010 Dec 6. PMID:21136521.
Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z, Zhao Q. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav. 2019 Oct;9(10):e01425. https://doi.org: 10.1002/brb3.1425. Epub 2019 Sep 30. PMID: 31566928; PMCID: PMC6790318.
Jin Z, Guo P, Li X, Ke J, Wang Y, Wu H. Neuroprotective effects of irisin against cerebral ischemia/reperfusion injury via Notch signaling pathway. Biomed Pharmacother. 2019 Dec;120:109452. https://doi.org: 10.1016/j.biopha.2019.109452. Epub 2019 Sep 24. PMID: 31561067.
Huangfu LX, Cai XT, Yang JN, Wang HC, Li YX, Dai ZF, Yang RL, Lin XH. Irisin attenuates inflammation in a mouse model of ulcerative colitis by altering the intestinal microbiota. Exp Ther Med.2021 Dec;22(6):1433. https://doi.org: 10.3892/etm.2021.10868. Epub 2021 Oct 11. PMID: 34707714;PMCID: PMC8543469.
Jandova T, Buendía-Romero A, Polanska H, Hola V, Rihova M, Vetrovsky T, Courel-Ibáñez J, Steffl M. Long-Term Effect of Exercise on Irisin Blood Levels-Systematic Review and Meta-Analysis.Healthcare (Basel). 2021 Oct 25;9(11):1438. https://doi.org: 10.3390/healthcare9111438. PMID:34828485; PMCID: PMC8618299.
Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR, Beckman D, Staniszewski A, Berman H, Guerra LA, Forny-Germano L, Meier S, Wilcock DM, de Souza JM, Alves-Leon S, Prado VF, Prado MAM, Abisambra JF, Tovar-Moll F, Mattos P, Arancio O, Ferreira ST, De Felice FG. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med. 2019 Jan;25(1):165-175. https://doi.org: 10.1038/s41591-018-0275-4. Epub 2019 Jan 7. PMID: 30617325; PMCID: PMC6327967.
Wang K, Li H, Wang H, Wang JH, Song F, Sun Y. Irisin Exerts Neuroprotective Effects on Cultured Neurons by Regulating Astrocytes. Mediators Inflamm. 2018 Sep 26;2018:9070341. https://doi.org:10.1155/2018/9070341. PMID: 30356412; PMCID: PMC6178172.
Belviranlı M, Okudan N. Exercise Training Protects Against Aging-Induced Cognitive Dysfunction via Activation of the Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuromolecular Med. 2018 Sep;20(3):386-400. https://doi.org: 10.1007/s12017-018-8500-3. Epub 2018 Jul 3. PMID: 29971668.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Joanna Paśnik, Gabriela Sendecka, Natalia Kistela, Izabela Hądzlik, Marcin Durowicz, Jan Piotrowski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 320
Number of citations: 0