Natriuretic peptide pathways in heart failure in the context of the analysis of the mechanism of action and potential usages of sacubitril/valsartan
DOI:
https://doi.org/10.12775/JEHS.2024.68.50185Keywords
pathophysiology of heart failure, natriuretic peptide pathways, treatment of heart failure, sacubitril/valsartanAbstract
Introduction and purposeHeart failure has become a civilization disease, affecting 1-2% of the world's population. It is a condition with various etiologies and phenotypes. The annual mortality rate due to heart failure is approximately 10%, with organ dysfunction caused by hypoperfusion and sudden cardiac death being the leading causes of death. The aim of this study is to present current knowledge of heart failure, focusing on its pathophysiology, and the mechanism of action and applications of sacubitril/valsartan.
Material and methods
The following review was based on articles from the PubMed and Google Scholar databases. Key search terms included pathophysiology of heart failure; natriuretic peptide pathways; treatment of heart failure; sacubitril/valsartan.
Conclusions
Heart failure is a syndrome marked by the activation of various neurohormonal systems such as the renin-angiotensin-aldosterone system (RAAS), the sympathetic nervous system (SNS) and natriuretic peptides (NP). Historically, the therapeutic approach has focused on reducing RAAS activity and SNS activity. In recent years, increasing attention has been given to potential benefits associated with the NP system.
Following disappointing outcomes from studies involving neprilysin (NEP) inhibitors, administered alone or in conjunction with an ACE inhibitor and vasopeptidase inhibitors, there have been findings with the pharmacological class termed ARNI (angiotensin receptor and NEP inhibitors). Sacubitril/valsartan has proven to be an effective and safe treatment that reduces the need for hospitalization, enhances the quality of life and longevity of patients with chronic HFrEF.
References
Irgashev, I. E. (2023). “Pathological Physiology of Heart Failure”. American Journal of Pediatric Medicine and Health Sciences (2993-2149), 1(8), 378–383. Available from: http://grnjournal.us/index.php/AJPMHS/article/view/1116
Schwinger RH. Pathophysiology of heart failure. Cardiovasc Diagn Ther [Internet]. February 2021 [cited March 18, 2024];11(1):263-76. Available from: https://doi.org/10.21037/cdt-20-302
Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci [Internet]. December 4, 2015 [cited March 18, 2024];130(2):57-77. Available from: https://doi.org/10.1042/cs20150469
Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev [Internet]. April 14, 2021 [cited March 18, 2024]. Available from: https://doi.org/10.1007/s10741-021-10105-w
Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R, Maahs S, Ksander G, Rigel DF, Jeng AY, Lin TH, Zheng W, Dole WP. Pharmacokinetics and Pharmacodynamics of LCZ696, a Novel Dual-Acting Angiotensin Receptor-Neprilysin Inhibitor (ARNi). J Clin Pharmacol [Internet]. April 2010 [cited March 18, 2024];50(4):401-14. Available from: https://doi.org/10.1177/0091270009343932
Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet [Internet]. April 2010 [cited March 18, 2024];375(9722):1255-66. Available from: https://doi.org/10.1016/s0140-6736(09)61966-8
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J [Internet]. May 20, 2016 [cited March 18, 2024];37(27):2129-200. Available from: https://doi.org/10.1093/eurheartj/ehw128
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol [Internet]. January 11, 2021 [cited March 18, 2024];18(6):400-23. Available from: https://doi.org/10.1038/s41569-020-00480-6
Park JJ. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes. Diabetes Amp Metab J [Internet]. March 31, 2021 [cited March 18, 2024];45(2):146-57. Available from: https://doi.org/10.4093/dmj.2020.0282
Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, D’Agostino RB. Inflammatory Markers and Risk of Heart Failure in Elderly Subjects Without Prior Myocardial Infarction. Circulation [Internet]. March 25, 2003 [cited March 18, 2024];107(11):1486-91. Available from: https://doi.org/10.1161/01.cir.0000057810.48709.f6
Witherow FN, Dawson P, Ludlam CA, Fox KA, Newby DE. Marked bradykinin-induced tissue plasminogen activator release in patients with heart failure maintained on long-term angiotensin-converting enzyme inhibitor therapy. J Am Coll Cardiol [Internet]. September 2002 [cited March 18, 2024];40(5):961-6. Available from: https://doi.org/10.1016/s0735-1097(02)02061-2
Flynn TG, de Bold ML, de Bold AJ. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun [Internet]. December 1983 [cited March 18, 2024];117(3):859-65. Available from: https://doi.org/10.1016/0006-291x(83)91675-3
Yandle TG, Richards AM. B-type Natriuretic Peptide circulating forms: Analytical and bioactivity issues. Clin Chim Acta [Internet]. August 2015 [cited March 18, 2024];448:195-205. Available from: https://doi.org/10.1016/j.cca.2015.07.004
Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc National Acad Sci [Internet]. July 4, 2000 [cited March 18, 2024];97(15):8525-9. Available from: https://doi.org/10.1073/pnas.150149097
McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Ž, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vahanian A, Windecker S, McDonagh T, Ponikowski P. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur J Heart Fail [Internet]. August 2012 [cited March 18, 2024];14(8):803-69. Available from: https://doi.org/10.1093/eurjhf/hfs105
Jeson Sangaralingham S, Kuhn M, Cannone V, Chen HH, Burnett JC. Natriuretic peptide pathways in heart failure – further therapeutic possibilities. Cardiovasc Res [Internet]. August 25, 2022 [cited March 18, 2024]. Available from: https://doi.org/10.1093/cvr/cvac125
Kuhn M. Molecular Physiology of Membrane Guanylyl Cyclase Receptors. Physiol Rev [Internet]. April 2016 [cited March 18, 2024];96(2):751-804. Available from: https://doi.org/10.1152/physrev.00022.2015
Castro LR, Schittl J, Fischmeister R. Feedback Control Through cGMP-Dependent Protein Kinase Contributes to Differential Regulation and Compartmentation of cGMP in Rat Cardiac Myocytes. Circ Res [Internet]. November 12, 2010 [cited March 18, 2024];107(10):1232-40. Available from: https://doi.org/10.1161/circresaha.110.226712
Hubers SA, Brown NJ. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition. Circulation [Internet]. March 15, 2016 [cited March 18, 2024];133(11):1115-24. Available from: https://doi.org/10.1161/circulationaha.115.018622
Moro C, Lafontan M. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am J Physiol Heart Circ Physiol [Internet]. February 1, 2013 [cited March 18, 2024];304(3):H358—H368. Available from: https://doi.org/10.1152/ajpheart.00704.2012
Hayashi D, Kudoh S, Shiojima I, Zou Y, Harada K, Shimoyama M, Imai Y, Monzen K, Yamazaki T, Yazaki Y, Nagai R, Komuro I. Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1. Biochem Biophys Res Commun [Internet]. September 2004 [cited March 18, 2024];322(1):310-9. Available from: https://doi.org/10.1016/j.bbrc.2004.07.119
Chen HH, Glockner JF, Schirger JA, Cataliotti A, Redfield MM, Burnett JC. Novel Protein Therapeutics for Systolic Heart Failure. J Am Coll Cardiol [Internet]. December 2012 [cited March 18, 2024];60(22):2305-12. Available from: https://doi.org/10.1016/j.jacc.2012.07.056
Forfia PR, Lee M, Tunin RS, Mahmud M, Champion HC, Kass DA. Acute Phosphodiesterase 5 Inhibition Mimics Hemodynamic Effects of B-Type Natriuretic Peptide and Potentiates B-Type Natriuretic Peptide Effects in Failing But Not Normal Canine Heart. J Am Coll Cardiol [Internet]. March 2007 [cited March 18, 2024];49(10):1079-88. Available from: https://doi.org/10.1016/j.jacc.2006.08.066
Schmitt M, Gunaruwan P, Payne N, Taylor J, Lee L, Broadley AJ, Nightingale AK, Cockcroft JR, Struthers AD, Tyberg JV, Frenneaux MP. Effects of Exogenous and Endogenous Natriuretic Peptides on Forearm Vascular Function in Chronic Heart Failure. Arterioscler Thromb Vasc Biol [Internet]. May 2004 [cited March 18, 2024];24(5):911-7. Available from: https://doi.org/10.1161/01.atv.zhq0504.7914
Vanneste Y, Michel A, Dimaline R, Najdovski T, Deschodt-Lanckman M. Hydrolysis of α-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site. Biochem J [Internet]. September, 1 1988 [cited March 18, 2024];254(2):531-7. Available from: https://doi.org/10.1042/bj2540531
Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J [Internet]. April 1, 1993 [cited March 18, 2024];291(1):83-8. Available from: https://doi.org/10.1042/bj2910083
Burnier M. Angiotensin II Type 1 Receptor Blockers. Circulation [Internet]. February 13, 2001 [cited March 18, 2024];103(6):904-12. Available from: https://doi.org/10.1161/01.cir.103.6.904
Feng L, Karpinski PH, Sutton P, Liu Y, Hook DF, Hu B, Blacklock TJ, Fanwick PE, Prashad M, Godtfredsen S, Ziltener C. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett [Internet]. January 2012 [cited March 18, 2024];53(3):275-6. Available from: https://doi.org/10.1016/j.tetlet.2011.11.029
Docherty KF, Vaduganathan M, Solomon SD, McMurray JJ. Sacubitril/Valsartan. JACC [Internet]. October 2020 [cited March 18, 2024];8(10):800-10. Available from: https://doi.org/10.1016/j.jchf.2020.06.020
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau J, Shi VC, Solomon SD, Swedberg K, Zile MR. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact. Eur J Heart Fail [Internet]. September 2013 [cited March 18, 2024];15(9):1062-73. Available from: https://doi.org/10.1093/eurjhf/hft052
Biering-Sørensen T, Lassen MC, Shah A, Claggett B, Zile M, Pieske B, Pieske-Kraigher E, Voors A, Shi V, Lefkowitz M, Packer M, McMurray JJ, Solomon SD. The Effect of Sacubitril/Valsartan on Left Ventricular Myocardial Deformation in Heart Failure with Preserved Ejection Fraction (PARAMOUNT trial). J Card Fail [Internet]. April 2023 [cited March 18, 2024]. Available from: https://doi.org/10.1016/j.cardfail.2023.03.019
Willard JR, Barrow BM, Zraika S. Improved glycaemia in high-fat-fed neprilysin-deficient mice is associated with reduced DPP-4 activity and increased active GLP-1 levels. Diabetologia [Internet]. December 8, 2016 [cited March 18, 2024];60(4):701-8. Available from: https://doi.org/10.1007/s00125-016-4172-4
Wachter R, Shah SJ, Cowie MR, Szecsödy P, Shi V, Ibram G, Zhao Z, Gong J, Klebs S, Pieske B. Angiotensin receptor neprilysin inhibition versus individualized RAAS blockade: design and rationale of the PARALLAX trial. ESC Heart Fail [Internet]. April 15, 2020 [cited March 18, 2024];7(3):856-64. Available from: https://doi.org/10.1002/ehf2.12694
Pieske B, Wachter R, Shah SJ, Baldridge A, Szeczoedy P, Ibram G, Shi V, Zhao Z, Cowie MR, Prado AC, Wenetz LM, Brasca DG, Albisu JP, Fernandez AA, Liberman A, Echeverria G, Bartolacci I, Ranz M, Pedrotti M, Tapia D, Robertson M, Exposito S, Barrionuevo M, Resk JH, Mercau G, Fuente RL, Avaca H, Poy C, Hominal MA, Cursack G, Vogelmann OA, Casas MM, Costantino M, Chiriffe J, Zweiker R, Motloch LJ, Auer J, Siostrzonek P, Grander W, Derthoo D, Mullens W, Vandekerckhove H, Maamar R, Delforge M, Mulleners T, Rassi S, Kormann AP, Moraes A, Manenti ER, Busse PJ. Effect of Sacubitril/Valsartan vs Standard Medical Therapies on Plasma NT-proBNP Concentration and Submaximal Exercise Capacity in Patients With Heart Failure and Preserved Ejection Fraction. JAMA [Internet]. November 16, 2021 [cited March 18, 2024];326(19):1919. Available from: https://doi.org/10.1001/jama.2021.18463
Jering KS, Claggett B, Pfeffer MA, Granger C, Køber L, Lewis EF, Maggioni AP, Mann D, McMurray JJ, Rouleau J, Solomon SD, Steg PG, Meer P, Wernsing M, Carter K, Guo W, Zhou Y, Lefkowitz M, Gong J, Wang Y, Merkely B, Macin SM, Shah U, Nicolau JC, Braunwald E. Prospective ARNI vs. ACE inhibitor trial to DetermIne Superiority in reducing heart failure Events after Myocardial Infarction (PARADISE‐MI): design and baseline characteristics. Eur J Heart Fail [Internet]. April 22, 2021 [cited March 18, 2024];23(6):1040-8. Available from: https://doi.org/10.1002/ejhf.2191
Boutagy NE, Feher A, Pfau D, Liu Z, Guerrera NM, Freeburg LA, Womack SJ, Hoenes AC, Zeiss C, Young LH, Spinale FG, Sinusas AJ. Dual Angiotensin Receptor-Neprilysin Inhibition With Sacubitril/Valsartan Attenuates Systolic Dysfunction in Experimental Doxorubicin-Induced Cardiotoxicity. JACC [Internet]. December 2020 [cited March 18, 2024];2(5):774-87. Available from: https://doi.org/10.1016/j.jaccao.2020.09.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamila Babkiewicz-Jahn, Justyna Matuszewska, Adrianna Szymańska, Wiktoria Wilanowska, Izabela Oleksak, Karolina Maliszewska, Natalia Załęska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 159
Number of citations: 0