Applications of gene modification technologies in the treatment of inherited diseases
DOI:
https://doi.org/10.12775/JEHS.2024.66.002Keywords
Crispr/cas9, gene modification, gene therapy, genetic diseasesAbstract
Introduction and Purpose: In last years gene modification technologies such as CRISPR/Cas9 has had a revolutionary impact on the treatment of inherited diseases. Technologies developed from bacterial defense mechanisms, has become a basic tools in scientific research and medical therapies. In our article we provided an overview of applications of gene modifications technologies, directly focusing on CRISPR/Cas9, in genetic disease treatment.
State of Knowledge: New applications of CRISPR/Cas9 are still being explored. Treating inherited diseases such as cystic fibrosis, Duchenne muscular dystrophy, thalassemia, hemophilia, Huntington's disease, Crigler-Najjar syndrome, sickle cell anemia, Marfan syndrome, and phenylketonuria, is feasible with this novel technique. A comparative analysis with other gene editing methods highlights CRISPR/Cas9's efficacy, ease of use, and multiplexing capabilities.
Summary: CRISPR/Cas9 is a groundbreaking technology with broad applications in genetic research and therapy. Its ease of use, cost-effectiveness, and ability to target multiple genes simultaneously position it as a preferred method. However, there are some challenges associated with precision issues and ethical considerations in human embryo gene editing. As CRISPR/Cas9 continues to evolve, responsible application and ethical considerations are important for maximizing its potential in treatment of genetic diseases.
References
. Mojica FJ, Rodriguez-Valera F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016;283(17):3162-3169. doi:10.1111/febs.13766
. Lander ES. The Heroes of CRISPR. Cell. 2016;164(1-2):18-28. doi:10.1016/j.cell.2015.12.041
. Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev. 2013;4(3):267-278. doi:10.1002/wrna.1159
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. doi:10.1126/science.1225829
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2015;351(6271):403-407. doi:10.1126/science.aad5143
Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985-989. doi:10.1038/nbt.3290
Siegler EL, Zhu Y, Wang P, Yang L. Off-the-Shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell. 2018;23(2):160-161. doi:10.1016/j.stem.2018.07.007
Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing CRISPR systems. Nat Chem Biol. 2021;17(1):10-19. doi:10.1038/s41589-020-00700-7.
Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing CRISPR systems. Nature Chemical Biology. 2020;17(1):10-19. doi:10.1038/s41589-020-00700-7
Khan SH. Genome-Editing Technologies: Concept, pros, and cons of various Genome-Editing techniques and bioethical concerns for clinical application. Molecular Therapy - Nucleic Acids. 2019;16:326-334. doi:10.1016/j.omtn.2019.02.027
Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: principles and applications. Cold Spring Harbor Perspectives in Biology. 2016;8(12):a023754. doi:10.1101/cshperspect.a023754
Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nature Biotechnology. 2005;23(8):967-973. doi:10.1038/nbt1125
Carroll D. Genome engineering with Zinc-Finger nucleases. Genetics. 2011;188(4):773-782. doi:10.1534/genetics.111.131433
Cai CQ, Doyon Y, Ainley WM, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology. 2008;69(6):699-709. doi:10.1007/s11103-008-9449-7
Rémy S, Tesson L, Ménoret S, Usal C, Scharenberg AM, Anegón I. Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Research. 2009;19(3):363-371. doi:10.1007/s11248-009-9323-7
Pérez E, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology. 2008;26(7):808-816. doi:10.1038/nbt1410
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics. 2010;11(9):636-646. doi:10.1038/nrg2842
Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021;2:100007. doi:10.1016/j.ggedit.2021.100007
Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology. 2012;14(1):49-55. doi:10.1038/nrm3486
Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013;31(7):397-405. doi:10.1016/j.tibtech.2013.04.004
Wright D, Li T, Yang B, Spalding MH. TALEN-mediated genome editing: prospects and perspectives. Biochemical Journal. 2014;462(1):15-24. doi:10.1042/bj20140295
Dupuy A, Valton J, Leduc S, et al. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALENTM. PLOS ONE. 2013;8(11):e78678. doi:10.1371/journal.pone.0078678
Li HL, Nakano T, Hotta A. Genetic correction using engineered nucleases for gene therapy applications. Development, Growth & Differentiation. 2013;56(1):63-77. doi:10.1111/dgd.12107
Castellani C, Assael BM. Cystic fibrosis: a clinical view. Cellular and Molecular Life Sciences. 2016;74(1):129-140. doi:10.1007/s00018-016-2393-9
Schwank G, Koo B, Sasselli V, et al. Functional repair of CFTR by CRISPR/CAS9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658. doi:10.1016/j.stem.2013.11.002
Crane AM, Krämer P, Bui JH, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 2015;4(4):569-577. doi:10.1016/j.stemcr.2015.02.005
Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nature Reviews Disease Primers. 2021;7(1). doi:10.1038/s41572-021-00248-3
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403-407. doi:10.1126/science.aad5143
Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400-403. doi:10.1126/science.aad5725
Unissa R, Monica B, Konakanchi S, Darak R, Keerthana S, Kumar SA. Thalassemia: a review. Asian Journal of Pharmaceutical Research. 2018;8(3):195. doi:10.5958/2231-5691.2018.00034.5
Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192-197. doi:10.1038/nature15521
Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nature Medicine. 2016;22(9):987-990. doi:10.1038/nm.4170
Kalebic N, Taverna E, Tavano S, et al. CRISPR /Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo. EMBO Reports. 2016;17(3):338-348. doi:10.15252/embr.201541715
Chuah M, Collen D, VandenDriessche T. Clinical Gene Transfer Studies for Hemophilia A. Seminars in Thrombosis and Hemostasis. 2004;30(02):249-256. doi:10.1055/s-2004-825638
Morishige S, Mizuno S, Ozawa H, et al. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. International Journal of Hematology. 2019;111(2):225-233. doi:10.1007/s12185-019-02765-0
Guan Y, Ma Y, Li Q, et al. CRISPR /Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Molecular Medicine. 2016;8(5):477-488. doi:10.15252/emmm.201506039
Li H, Haurigot V, Doyon Y, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217-221. doi:10.1038/nature10177
Walker FO. Huntington's disease. The Lancet. 2007;369(9557):218-228. doi:10.1016/s0140-6736(07)60111-1
Choi KA, Choi Y, Hong S. Stem cell transplantation for Huntington's diseases. Methods. 2018;133:104-112. doi:10.1016/j.ymeth.2017.08.017
Kolli N, Lu M, Maiti P, Rossignol J, Dunbar G. CRISPR-CAS9 mediated Gene-Silencing of the mutant huntingtin gene in an in vitro model of Huntington's disease. International Journal of Molecular Sciences. 2017;18(4):754. doi:10.3390/ijms18040754
Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-CAS9-Mediated Genome editing increases lifespan and improves motor deficits in a Huntington's Disease mouse model. Molecular Therapy - Nucleic Acids. 2019;17:829-839. doi:10.1016/j.omtn.2019.07.009
Jansen P. Diagnosis and management of Crigler-Najjar syndrome. European Journal of Pediatrics. 1999;158(S2):S089-S094. doi:10.1007/pl00014330
Greig JA, Nordin JML, Draper C, Bell P, Wilson JM. AAV8 gene therapy rescues the newborn phenotype of a mouse model of Crigler-Najjar. Human Gene Therapy. 2018;29(7):763-770. doi:10.1089/hum.2017.185
Porro, Fabiola, et al. "Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model." EMBO molecular medicine 9.10 (2017): 1346-1355.
Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics. 2001;21(4):971-994. doi:10.1148/radiographics.21.4.g01jl23971
Park SH, Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfusion and Apheresis Science. 2021;60(1):103060. doi:10.1016/j.transci.2021.103060
Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539(7629):384-389. doi:10.1038/nature20134
Antoniani C, Meneghini V, Lattanzi A, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 2018;131(17):1960-1973. doi:10.1182/blood-2017-10-811505
Pyeritz RE. The Marfan syndrome. Annual Review of Medicine. 2000;51(1):481-510. doi:10.1146/annurev.med.51.1.481
Kallenbach K, Remes A, Müller O, Arif R, Zaradzki M, Wagner AH. Translational Medicine: toward gene therapy of Marfan syndrome. Journal of Clinical Medicine. 2022;11(14):3934. doi:10.3390/jcm11143934
Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nature Genetics. 2016;49(1):97-109. doi:10.1038/ng.3723
Seok H, Deng RP, Cowan DB, Wang D. Application of CRISPR-Cas9 gene editing for congenital heart disease. Clinical and Experimental Pediatrics (Online). 2021;64(6):269-279. doi:10.3345/cep.2020.02096
Blau N, Van Spronsen FJ, Levy HL. Phenylketonuria. The Lancet. 2010;376(9750):1417-1427. doi:10.1016/s0140-6736(10)60961-0
Abdelnour SA, Abdelnour SA, Xie L, Hassanin AA, Zuo E. The potential of CRISPR/CAS9 gene editing as a treatment strategy for inherited diseases. Frontiers in Cell and Developmental Biology. 2021;9. doi:10.3389/fcell.2021.699597
Richards DY, Winn SR, Dudley S, et al. AAV-Mediated CRISPR/CAS9 gene editing in murine phenylketonuria. Molecular Therapy - Methods & Clinical Development. 2020;17:234-245. doi:10.1016/j.omtm.2019.12.004
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology. 2013;31(9):822-826. doi:10.1038/nbt.2623
Yin H, Kanasty R, El-Toukhy A, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nature Reviews Genetics. 2014;15(8):541-555. doi:10.1038/nrg3763
Hsu P, Lander ES, Zhang F. Development and applications of CRISPR-CAS9 for genome engineering. Cell. 2014;157(6):1262-1278. doi:10.1016/j.cell.2014.05.010
Lanphier E, Urnov FD, Haecker SE, Werner M, Smolenski J. Don't edit the human germ line. Nature. 2015;519(7544):410-411. doi:10.1038/519410a
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481-485. doi:10.1038/nature14592
Slaymaker IM, Gao L, Zetsche B, Scott D, Yan W, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84-88. doi:10.1126/science.aad5227
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-495. doi:10.1038/nature16526
Liu C, Zhang L, Líu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release. 2017;266:17-26. doi:10.1016/j.jconrel.2017.09.012
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-157. doi:10.1038/s41586-019-1711-4
Tsai SQ, Zheng Z, Nguyen N, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology. 2014;33(2):187-197. doi:10.1038/nbt.3117
Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nature Reviews Genetics. 2016;17(5):300-312. doi:10.1038/nrg.2016.28
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maciej Superson, Katarzyna Szmyt, Klaudia Wilk-Trytko, Julia Krasnoborska, Sylwia Samojedny, Katarzyna Szymańska, Kamil Walczak
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 539
Number of citations: 0