How can caffeine alleviate the motor symptoms of Parkinson’s disease? – the implications of adenosine 2A receptor antagonism
DOI:
https://doi.org/10.12775/JEHS.2024.71.49808Keywords
Parkinson's disease, motor function, dopamine, adenosine a2a receptor, striatal pathwaysAbstract
Introduction and purpose: Parkinson’s disease (PD) is the second most common neurodegenerative disease, mainly characterized by motor impairment with symptoms including rigidity, bradykinesia, rest tremor and imbalance. It develops upon degeneration of dopaminergic neurons in the substantia nigra associated with neuroinflammatory process initiated by alpha-synuclein deposits. Although, levodopa replacement therapy is the gold-standard treatment, majority of the treated patients develop dyskinesia as the side effect, resulting from altered function of dopamine receptors. It is thought that the abnormal pulsate release of dopamine can be prevented by antagonism of adenosine 2A receptors (A2ARs).
Aim of the study: This review aims to outline the action mechanism of A2AR antagonism on motor performance, and thus evaluate the suggested implications of coffee consumption in PD. Material and method: The involvement of A2ARs in the pathology and treatment of PD has been analyzed based on the findings of many published studies examining the effects of A2AR modulation.
Results: Blockage of A2ARs enhances the action of dopamine via D2 receptors on striatopallidal neurons, decreasing their hyperactivity, and exerts neuroprotective effect, suppressing the neuroinflammation.
Conclusions: Istradefylline, being the only approved A2AR antagonist, was able to reduce total cumulative dose of levodopa, improve motor control, alleviate postural abnormalities, and provide a reduction in daily ‘off’ time experienced by patients. Recent findings suggest the effects of drinking one cup of coffee are comparable with ones obtained by the newly introduced medication, presumably via shared action mechanism by A2AR inhibition.
References
Abudukeyoumu N, Hernandez‐Flores T, Garcia‐Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. European Journal of Neuroscience. 2018;49(5):604-622. doi:https://doi.org/10.1111/ejn.13949
Andreska T, Lüningschrör P, Wolf D, et al. DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons. Cell Reports. 2023;42(6):112575-112575. doi:https://doi.org/10.1016/j.celrep.2023.112575
Asadi A, Madadi Asl M, Vahabie AH, Valizadeh A. The Origin of Abnormal Beta Oscillations in the Parkinsonian Corticobasal Ganglia Circuits. Martella G, ed. Parkinson’s Disease. 2022;2022:1-13. doi:https://doi.org/10.1155/2022/7524066
Augusto E, Matos M, Sevigny J, et al. Ecto-5’-Nucleotidase (CD73)-Mediated Formation of Adenosine Is Critical for the Striatal Adenosine A2A Receptor Functions. Journal of Neuroscience. 2013;33(28):11390-11399. doi:https://doi.org/10.1523/jneurosci.5817-12.2013
Badshah H, Ikram M, Ali W, Ahmad S, Hahm JR, Kim MO. Caffeine May Abrogate LPS-Induced Oxidative Stress and Neuroinflammation by Regulating Nrf2/TLR4 in Adult Mouse Brains. Biomolecules. 2019;9(11):719. doi:https://doi.org/10.3390/biom9110719
Baufreton J. Enhancement of Excitatory Synaptic Integration by GABAergic Inhibition in the Subthalamic Nucleus. Journal of Neuroscience. 2005;25(37):8505-8517. doi:https://doi.org/10.1523/jneurosci.1163-05.2005
Boia R, Elvas F, Madeira MH, et al. Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death & Disease. 2017;8(10):e3065-e3065. doi:https://doi.org/10.1038/cddis.2017.451
Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Müller CE, Fuxe K. Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. Frontiers in Neuroscience. 2018;12. doi:https://doi.org/10.3389/fnins.2018.00043
Brandes MS, Zweig JA, Tang A, Gray NE. NRF2 Activation Ameliorates Oxidative Stress and Improves Mitochondrial Function and Synaptic Plasticity, and in A53T α-Synuclein Hippocampal Neurons. Antioxidants. 2021;11(1):26. doi:https://doi.org/10.3390/antiox11010026
Carla A, Carmo M, Behrenswerth A, Canas PM, Agostinho P, Cunha RA. Adenosine A2A Receptor Blockade Provides More Effective Benefits at the Onset Rather than after Overt Neurodegeneration in a Rat Model of Parkinson’s Disease. International journal of molecular sciences. 2024;25(9):4903-4903. doi:https://doi.org/10.3390/ijms25094903
Carmo MRS, Menezes APF, Nunes ACL, et al. The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology. 2014;81:142-152. doi:https://doi.org/10.1016/j.neuropharm.2014.01.045
Carpenter B, Lebon G. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation. Frontiers in Pharmacology. 2017;8. doi:https://doi.org/10.3389/fphar.2017.00898
Carr DB, Day M, Cantrell AR, et al. Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity. Neuron. 2003;39(5):793-806. doi:https://doi.org/10.1016/s0896-6273(03)00531-2
Chen JF, Cunha RA. The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signalling. 2020;16(2). doi:https://doi.org/10.1007/s11302-020-09694-2
Chen Y, Liu YW, Cottingham C, et al. Neurabin Scaffolding of Adenosine Receptor and RGS4 Regulates Anti-Seizure Effect of Endogenous Adenosine. 2012;32(8):2683-2695. doi:https://doi.org/10.1523/jneurosci.4125-11.2011
Chu HY. Synaptic and cellular plasticity in Parkinson’s disease. Acta Pharmacologica Sinica. 2020;41(4):447-452. doi:https://doi.org/10.1038/s41401-020-0371-0
Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons. Neuron. 2017;95(6):1306-1318.e5. doi:https://doi.org/10.1016/j.neuron.2017.08.038
Ciruela F. Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience. 2006;26(7):2080-2087. doi:https://doi.org/10.1523/jneurosci.3574-05.2006
Colella M, Zinni M, Pansiot J, et al. Modulation of Microglial Activation by Adenosine A2a Receptor in Animal Models of Perinatal Brain Injury. Frontiers in Neurology. 2018;9. doi:https://doi.org/10.3389/fneur.2018.00605
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? Journal of Neurochemistry. 2016;139(6):1019-1055. doi:https://doi.org/10.1111/jnc.13724
Dell’Anno MT, Pallottino S, Fisone G. mGlu5R promotes glutamate AMPA receptor phosphorylation via activation of PKA/DARPP-32 signaling in striatopallidal medium spiny neurons. Neuropharmacology. 2013;66:179-186. doi:https://doi.org/10.1016/j.neuropharm.2012.03.025
Dias L, Lopes CR, Gonçalves FQ, et al. Crosstalk Between ATP-P2X7 and Adenosine A2A Receptors Controlling Neuroinflammation in Rats Subject to Repeated Restraint Stress. Frontiers in cellular neuroscience. 2021;15. doi:https://doi.org/10.3389/fncel.2021.639322
Ding J, Guzman JN, Tkatch T, et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nature Neuroscience. 2006;9(6):832-842. doi:https://doi.org/10.1038/nn1700
Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ. Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons. Neuron. 2010;67(2):294-307. doi:https://doi.org/10.1016/j.neuron.2010.06.017
Domenici MR, Mallozzi C, Pepponi R, et al. Insight into the Role of the STriatal-Enriched Protein Tyrosine Phosphatase (STEP) in A2A Receptor-Mediated Effects in the Central Nervous System. Frontiers in Pharmacology. 2021;12. doi:https://doi.org/10.3389/fphar.2021.647742
EMA. Nouryant - European Medicines Agency. European Medicines Agency. Published July 19, 2021. Accessed April 15, 2024. https://www.ema.europa.eu/en/medicines/human/EPAR/nouryant
Ena SL, De Backer JF ., Schiffmann SN, de Kerchove d’Exaerde A. FACS Array Profiling Identifies Ecto-5’ Nucleotidase as a Striatopallidal Neuron-Specific Gene Involved in Striatal-Dependent Learning. Journal of Neuroscience. 2013;33(20):8794-8809. doi:https://doi.org/10.1523/jneurosci.2989-12.2013
Fernandez HH, Greeley DR, Zweig RM, Wojcieszek J, Mori A, Sussman NM. Istradefylline as monotherapy for Parkinson disease: Results of the 6002-US-051 trial. Parkinsonism & Related Disorders. 2010;16(1):16-20. doi:https://doi.org/10.1016/j.parkreldis.2009.06.008
Ferré S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology. 2016;233(10):1963-1979. doi:https://doi.org/10.1007/s00213-016-4212-2
Ferré S, Quiroz C, Orru M, et al. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function. Frontiers in Neuroanatomy. 2011;5. doi:https://doi.org/10.3389/fnana.2011.00036
Franco R, Reyes‐Resina I, Aguinaga D, et al. Potentiation of cannabinoid signaling in microglia by adenosine A 2A receptor antagonists. Glia. 2019;67(12):2410-2423. doi:https://doi.org/10.1002/glia.23694
Geetika Kharkwal, Brami-Cherrier K, José E. Lizardi-Ortiz, et al. Parkinsonism Driven by Antipsychotics Originates from Dopaminergic Control of Striatal Cholinergic Interneurons. Neuron. 2016;91(1):67-78. doi:https://doi.org/10.1016/j.neuron.2016.06.014
Giunta S, Andriolo V, Castorina A. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride. 2014;54:122-136. doi:https://doi.org/10.1016/j.biocel.2014.07.009
Goldberg JA. Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium-Activated Potassium Currents in Striatal Cholinergic Interneurons. Journal of Neuroscience. 2005;25(44):10230-10238. doi:https://doi.org/10.1523/jneurosci.2734-05.2005
Gomes C, Ferreira R, George J, et al. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. Journal of Neuroinflammation. 2013;10(1). doi:https://doi.org/10.1186/1742-2094-10-16
Gonçalves FQ, Matheus FC, Silva HB, et al. Increased ATP Release and Higher Impact of Adenosine A2A Receptors on Corticostriatal Plasticity in a Rat Model of Presymptomatic Parkinson’s Disease. Molecular Neurobiology. 2022;60(3):1659-1674. doi:https://doi.org/10.1007/s12035-022-03162-1
Hatano T, Renpei Sengoku, Nagayama H, et al. Impact of Istradefylline on Levodopa Dose Escalation in Parkinson’s Disease: ISTRA ADJUST PD Study, a Multicenter, Open-Label, Randomized, Parallel-Group Controlled Study. Neurology and Therapy. Published online January 16, 2024. doi:https://doi.org/10.1007/s40120-023-00574-6
Hattori N, Daijiro Kabata, Asada S, et al. Real-world evidence on levodopa dose escalation in patients with Parkinson’s disease treated with istradefylline. PLOS ONE. 2023;18(12):e0269969-e0269969. doi:https://doi.org/10.1371/journal.pone.0269969
He X, Liu Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Proliferation. 2022;55(9). doi:https://doi.org/10.1111/cpr.13275
He Y, Taylor N, Fourgeaud L, Bhattacharya A. The role of microglial P2X7: modulation of cell death and cytokine release. Journal of Neuroinflammation. 2017;14(1). doi:https://doi.org/10.1186/s12974-017-0904-8
Hernández-González O, Hernández-Flores T, Prieto GA, et al. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A2A receptors in striatal projection neurons. Purinergic signalling. 2013;10(2):269-281. doi:https://doi.org/10.1007/s11302-013-9386-z
Hsu CW, Chen CY, Wang CS, Chiu TH. Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice. Psychopharmacology. 2009;204(2):313-325. doi:https://doi.org/10.1007/s00213-009-1461-3
Hu Q, Ren X, Liu Y, et al. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Experimental Neurology. 2016;283:213-223. doi:https://doi.org/10.1016/j.expneurol.2016.05.040
Hu Q, Xu L, Liu X, Wang Y, Yuan J. Adenosine A2A receptor antagonist KW6002 protects against A53T mutant alpha-synuclein-induced brain damage and neuronal apoptosis in Parkinson’s disease mice by restoring autophagic flux. Neuroscience Letters. Published online December 1, 2023:137610-137610. doi:https://doi.org/10.1016/j.neulet.2023.137610
Huang J, Zhang X, Yang X, et al. Baicalin exerts neuroprotective actions by regulating the Nrf2-NLRP3 axis in toxin-induced models of Parkinson’s disease. Chemico-Biological Interactions. 2024;387:110820-110820. doi:https://doi.org/10.1016/j.cbi.2023.110820
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer’s and Parkinson’s Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants. 2020;9(9):902. doi:https://doi.org/10.3390/antiox9090902
Illes P. P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2020;21(17):E5996. doi:https://doi.org/10.3390/ijms21175996
Imran Waggan, Rissanen E, Jouni Tuisku, et al. Adenosine A2A receptor availability in patients with early- and moderate-stage Parkinson’s disease. Journal of Neurology. 2022;270(1):300-310. doi:https://doi.org/10.1007/s00415-022-11342-1
Ishibashi K, Miura Y, Wagatsuma K, Toyohara J, Ishiwata K, Ishii K. Adenosine A2A Receptor Occupancy by Caffeine After Coffee Intake in Parkinson's Disease. Movement Disorders. 2022;37(4):853-857. doi:https://doi.org/10.1002/mds.28897
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline – a first generation adenosine A2A antagonist for the treatment of Parkinson’s disease. Expert Review of Neurotherapeutics. Published online January 28, 2021. doi:https://doi.org/10.1080/14737175.2021.1880896
Kachroo A. Interactions between Metabotropic Glutamate 5 and Adenosine A2A Receptors in Normal and Parkinsonian Mice. Journal of Neuroscience. 2005;25(45):10414-10419. doi:https://doi.org/10.1523/jneurosci.3660-05.2005
Kalda A, Yu L, Oztas E, Chen JF. Novel neuroprotection by caffeine and adenosine A2A receptor antagonists in animal models of Parkinson’s disease. Journal of the Neurological Sciences. 2006;248(1-2):9-15. doi:https://doi.org/10.1016/j.jns.2006.05.003
Kang CH, Prasad G, Dilshara MG, et al. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-κB activation and ERK phosphorylation. Food and chemical toxicology. 2012;50(12):4270-4276. doi:https://doi.org/10.1016/j.fct.2012.08.041
Kang SS, Zhang Z, Liu X, et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(40):10773-10778. doi:https://doi.org/10.1073/pnas.1713969114
Khadrawy YA, Salem AM, El-Shamy KA, Ahmed EK, Fadl NN, Hosny EN. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson’s Disease Induced by Rotenone. Journal of Dietary Supplements. 2017;14(5):553-572. doi:https://doi.org/10.1080/19390211.2016.1275916
Kim T, Capps RA, Hamade KC, et al. The Functional Role of Striatal Cholinergic Interneurons in Reinforcement Learning From Computational Perspective. Frontiers in Neural Circuits. 2019;13. doi:https://doi.org/10.3389/fncir.2019.00010
Kondabolu K, Roberts EA, Bucklin M, McCarthy MM, Kopell N, Han X. Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(22). doi:https://doi.org/10.1073/pnas.1605658113
Kondo T, Mizuno Y. A Long-Term Study of Istradefylline Safety and Efficacy in Patients With Parkinson Disease. Clinical Neuropharmacology. 2015;38(2):41-46. doi:https://doi.org/10.1097/wnf.0000000000000073
Krania P, Dimou E, Bantouna M, et al. Adenosine A2A receptors are required for glutamate mGluR5‐ and dopamine D1 receptor‐evoked ERK1/2 phosphorylation in rat hippocampus: involvement of NMDA receptor. Journal of neurochemistry. 2018;145(3):217-231. doi:https://doi.org/10.1111/jnc.14268
Kreitzer AC. Physiology and pharmacology of striatal neurons. Annual review of neuroscience. 2009;32:127-147. doi:https://doi.org/10.1146/annurev.neuro.051508.135422
Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature. 2007;445(7128):643-647. doi:https://doi.org/10.1038/nature05506
Kurokawa M, Kirk IP, Kirkpatrick KA, Kase H, Richardson PJ. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. British Journal of Pharmacology. 1994;113(1):43-48. doi:https://doi.org/10.1111/j.1476-5381.1994.tb16171.x
Lalchandani RR, van der Goes MS ., Partridge JG, Vicini S. Dopamine D2 Receptors Regulate Collateral Inhibition between Striatal Medium Spiny Neurons. Journal of Neuroscience. 2013;33(35):14075-14086. doi:https://doi.org/10.1523/jneurosci.0692-13.2013
Laverne G, Pesce J, Reynders A, et al. Cholinergic interneuron inhibition potentiates corticostriatal transmission in direct medium spiny neurons and rescues motor learning in parkinsonism. Cell Reports. 2022;40(1):111034-111034. doi:https://doi.org/10.1016/j.celrep.2022.111034
Lemos JC, Shin JH, Alvarez VA. Striatal Cholinergic Interneurons Are a Novel Target of Corticotropin Releasing Factor. The Journal of Neuroscience. 2019;39(29):5647-5661. doi:https://doi.org/10.1523/jneurosci.0479-19.2019
Lerner TN, Horne EA, Stella N, Kreitzer AC. Endocannabinoid Signaling Mediates Psychomotor Activation by Adenosine A2A Antagonists. Journal of Neuroscience. 2010;30(6):2160-2164. doi:https://doi.org/10.1523/JNEUROSCI.5844-09.2010
Lerner Talia N, Kreitzer Anatol C. RGS4 Is Required for Dopaminergic Control of Striatal LTD and Susceptibility to Parkinsonian Motor Deficits. Neuron. 2012;73(2):347-359. doi:https://doi.org/10.1016/j.neuron.2011.11.015
Li Y, Xia Y, Yin S, et al. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson’s Disease. Frontiers in Immunology. 2021;12. doi:https://doi.org/10.3389/fimmu.2021.719807
Lindskog M, Svenningsson P, Pozzi L, et al. Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature. 2002;418(6899):774-778. doi:https://doi.org/10.1038/nature00817
Luan Y, Ren X, Zheng W, et al. Chronic Caffeine Treatment Protects Against α-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum. Frontiers in Neuroscience. 2018;12. doi:https://doi.org/10.3389/fnins.2018.00301
Mallet N, Pogosyan A, Marton LF, Bolam JP, Brown P, Magill PJ. Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity. Journal of Neuroscience. 2008;28(52):14245-14258. doi:https://doi.org/10.1523/jneurosci.4199-08.2008
Mallet N, Pogosyan A, Sharott A, et al. Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex. Journal of Neuroscience. 2008;28(18):4795-4806. doi:https://doi.org/10.1523/jneurosci.0123-08.2008
Maria Rosaria Domenici, Pepponi R, Martire A, Maria Teresa Tebano, Potenza R, Popoli P. Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum. Journal of Neurochemistry. 2004;90(5):1276-1279. doi:https://doi.org/10.1111/j.1471-4159.2004.02607.x
Martire A, Tebano MT, Chiodi V, et al. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission. Journal of Neurochemistry. 2010;116(2):273-280. doi:https://doi.org/10.1111/j.1471-4159.2010.07101.x
Mathur BN, Lovinger DM. Endocannabinoid–Dopamine Interactions in Striatal Synaptic Plasticity. Frontiers in Pharmacology. 2012;3. doi:https://doi.org/10.3389/fphar.2012.00066
Maurice N, Liberge M, Jaouen F, et al. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism. Cell Reports. 2015;13(4):657-666. doi:https://doi.org/10.1016/j.celrep.2015.09.034
Maurice N, Mercer J, Chan CS, et al. D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons. Journal of Neuroscience. 2004;24(46):10289-10301. doi:https://doi.org/10.1523/JNEUROSCI.2155-04.2004
McIver EL, Atherton JF, Chu HY, et al. Maladaptive Downregulation of Autonomous Subthalamic Nucleus Activity following the Loss of Midbrain Dopamine Neurons. Cell Reports. 2019;28(4):992-1002.e4. doi:https://doi.org/10.1016/j.celrep.2019.06.076
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, et al. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor–Receptor Interactions. Membranes. 2024;14(5):96-96. doi:https://doi.org/10.3390/membranes14050096
Mizuno Y, Kondo T. Adenosine A2Areceptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Movement Disorders. 2013;28(8):1138-1141. doi:https://doi.org/10.1002/mds.25418
Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience. 2016;314:145-159. doi:https://doi.org/10.1016/j.neuroscience.2015.11.059
Morelli M, Pinna A, Wardas J, Di Chiara G. Adenosine A2 receptors stimulate c-fos expression in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience. 1995;67(1):49-55. doi:https://doi.org/10.1016/0306-4522(94)00602-2
Morelli M, Simola N, Wardas J. The Adenosinergic System. Springer; 2015.
Moreno E, Chiarlone A, Medrano M, et al. Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum. Neuropsychopharmacology. 2017;43(5):964-977. doi:https://doi.org/10.1038/npp.2017.12
Mori A. How do adenosine A2A receptors regulate motor function? Parkinsonism & Related Disorders. 2020;80:S13-S20. doi:https://doi.org/10.1016/j.parkreldis.2020.09.025
Nakhmani A, Olson J, Irwin Z, et al. Cortical and STN spectral changes during limb movements in PD patients with and without dystonia. medRxiv (Cold Spring Harbor Laboratory). Published online January 5, 2022. doi:https://doi.org/10.1101/2022.01.04.22268757
Ohno Y, Okita E, Kawai-Uchida M, et al. Anti-parkinsonian activity of the adenosine A2A receptor antagonist/inverse agonist KW-6356 as monotherapy in MPTP-treated common marmosets. Published online May 1, 2023:175773-175773. doi:https://doi.org/10.1016/j.ejphar.2023.175773
Ohno Y, Okita E, Kawai-Uchida M, et al. The adenosine A2A receptor antagonist/inverse agonist, KW-6356 enhances the anti-parkinsonian activity of L-DOPA with a low risk of dyskinesia in MPTP-treated common marmosets. Journal of Pharmacological Sciences. 2023;152(3):193-199. doi:https://doi.org/10.1016/j.jphs.2023.05.001
Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414(6866):916-920. doi:https://doi.org/10.1038/414916a
Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF. Adenosine A2A receptor mediates microglial process retraction. Nature Neuroscience. 2009;12(7):872-878. doi:https://doi.org/10.1038/nn.2341
Padilla‐Orozco M, Duhne M, Fuentes-Serrano A, et al. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Frontiers in Synaptic Neuroscience. 2022;14. doi:https://doi.org/10.3389/fnsyn.2022.945816
Park A, Stacy M. Istradefylline for the treatment of Parkinson’s disease. Expert Opinion on Pharmacotherapy. 2011;13(1):111-114. doi:https://doi.org/10.1517/14656566.2012.643869
Perkinton MS, Ip JK, Wood GL, Crossthwaite AJ, Williams RJ. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. Journal of Neurochemistry. 2002;80(2):239-254. doi:https://doi.org/10.1046/j.0022-3042.2001.00699.x
Pierri M, Vaudano E, Sager T, Englund U. KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology. 2005;48(4):517-524. doi:https://doi.org/10.1016/j.neuropharm.2004.11.009
Prasad K, F.J E, Esther, et al. Effects of the adenosine A2A receptor antagonist KW6002 on the dopaminergic system, motor performance, and neuroinflammation in a rat model of Parkinson’s disease. Neuropharmacology. Published online February 1, 2024:109862-109862. doi:https://doi.org/10.1016/j.neuropharm.2024.109862
Prediger RDS. Effects of Caffeine in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Non-Motor Symptoms. Cunha RA, de Mendonça A, eds. Journal of Alzheimer’s Disease. 2010;20(s1):S205-S220. doi:https://doi.org/10.3233/jad-2010-091459
Preston Z, Lee K, Widdowson L, Freeman TC, Dixon AK, Richardson PJ. Adenosine receptor expression and function in rat striatal cholinergic interneurons. British Journal of Pharmacology. 2000;130(4):886-890. doi:https://doi.org/10.1038/sj.bjp.0703366
Quiroz C, Gomes C, Pak AC, et al. Blockade of Adenosine A2AReceptors Prevents Protein Phosphorylation in the Striatum Induced by Cortical Stimulation. The journal of neuroscience/The Journal of neuroscience. 2006;26(42):10808-10812. doi:https://doi.org/10.1523/jneurosci.1661-06.2006
Quiroz C, Luján R, Uchigashima M, et al. Key Modulatory Role of Presynaptic Adenosine A2AReceptors in Cortical Neurotransmission to the Striatal Direct Pathway. The Scientific World Journal. 2009;9:1321-1344. doi:https://doi.org/10.1100/tsw.2009.143
Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology. 2011;76(21):1811-1816. doi:https://doi.org/10.1212/wnl.0b013e31821ccce4
Regina M, Gonçalves FQ, Canas PM, et al. Enhanced ATP release and CD73‐mediated adenosine formation sustain adenosine A 2A receptor over‐activation in a rat model of Parkinson’s disease. British Journal of Pharmacology. 2019;176(18):3666-3680. doi:https://doi.org/10.1111/bph.14771
Ren X, Chen JF. Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Frontiers in Neuroscience. 2020;14. doi:https://doi.org/10.3389/fnins.2020.602697
Reyhani-Rad S, Mahmoudi J. Effect of adenosine A2A receptor antagonists on motor disorders induced by 6-hydroxydopamine in rat. Acta Cirurgica Brasileira. 2016;31(2):133-137. doi:https://doi.org/10.1590/s0102-865020160020000008
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Disease. 2018;109:249-257. doi:https://doi.org/10.1016/j.nbd.2017.04.004
Sancho M, Klug NR, Mughal A, et al. Adenosine signaling activates ATP-sensitive K + channels in endothelial cells and pericytes in CNS capillaries. 2022;15(727). doi:https://doi.org/10.1126/scisignal.abl5405
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson’s Disease. International Journal of Molecular Sciences. 2020;21(13):4766. doi:https://doi.org/10.3390/ijms21134766
Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S. Adenosine A2A receptors and basal ganglia physiology. Progress in Neurobiology. 2007;83(5):277-292. doi:https://doi.org/10.1016/j.pneurobio.2007.05.001
Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends in Neurosciences. 2006;29(11):647-654. doi:https://doi.org/10.1016/j.tins.2006.09.004
Shen W, Plotkin Joshua L, Francardo V, et al. M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron. 2015;88(4):762-773. doi:https://doi.org/10.1016/j.neuron.2015.10.039
St-Pierre J, Drori S, Uldry M, et al. Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell. 2006;127(2):397-408. doi:https://doi.org/10.1016/j.cell.2006.09.024
Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: An Integrator of Neurotransmission. Annual Review of Pharmacology and Toxicology. 2004;44(1):269-296. doi:https://doi.org/10.1146/annurev.pharmtox.44.101802.121415
Tadijan A, Vlašić I, Vlainić J, Đikić D, Oršolić N, Jazvinšćak Jembrek M. Intracellular Molecular Targets and Signaling Pathways Involved in Antioxidative and Neuroprotective Effects of Cannabinoids in Neurodegenerative Conditions. Antioxidants. 2022;11(10):2049. doi:https://doi.org/10.3390/antiox11102049
Takahashi M, Shimokawa T, Koh J, et al. Effect of istradefylline on postural abnormalities in patients with Parkinson’s disease: An association study of baseline postural angle measurements with changes in unified dystonia rating scale total score. eNeurologicalSci. 2024;34:100493-100493. doi:https://doi.org/10.1016/j.ensci.2023.100493
Tanimura A, Du Y, Kondapalli J, Wokosin DL, Surmeier DJ. Cholinergic Interneurons Amplify Thalamostriatal Excitation of Striatal Indirect Pathway Neurons in Parkinson’s Disease Models. Neuron. 2019;101(3):444-458.e6. doi:https://doi.org/10.1016/j.neuron.2018.12.004
Taverna S, Ilijic E, Surmeier DJ. Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson’s Disease. Journal of Neuroscience. 2008;28(21):5504-5512. doi:https://doi.org/10.1523/jneurosci.5493-07.2008
Tebano MT, Martire A, Chiodi V, et al. Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum. Journal of neurochemistry. 2009;110(6):1921-1930. doi:https://doi.org/10.1111/j.1471-4159.2009.06282.x
Tebano MT, Martire A, Popoli P. Adenosine A2A–cannabinoid CB1 receptor interaction: An integrative mechanism in striatal glutamatergic neurotransmission. Brain Research. 2012;1476:108-118. doi:https://doi.org/10.1016/j.brainres.2012.04.051
Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E. Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses. Proceedings of the National Academy of Sciences. 2007;104(24):10258-10263. doi:https://doi.org/10.1073/pnas.0703813104
Tozzi A, de Iure A, Di Filippo M, et al. The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D2/A2A Receptor Interaction in the Striatum: Implications for Parkinson’s Disease. Journal of Neuroscience. 2011;31(5):1850-1862. doi:https://doi.org/10.1523/jneurosci.4082-10.2011
Tozzi A, de Iure A, Marsili V, et al. A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation. Manzoni OJ, ed. PLoS ONE. 2012;7(6):e38312. doi:https://doi.org/10.1371/journal.pone.0038312
TrösterAI. Clinical Neuropsychology and Cognitive Neurology of Parkinson’s Disease and Other Movement Disorders. Oxford University Press; 2015.
Vincenzi F, Pasquini S, Contri C, et al. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules. 2023;13(9):1387-1387. doi:https://doi.org/10.3390/biom13091387
Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. International Journal of Molecular Sciences. 2017;18(12). doi:https://doi.org/10.3390/ijms18122772
Wall Nicholas R, De La Parra M, Callaway Edward M, Kreitzer Anatol C. Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons. Neuron. 2013;79(2):347-360. doi:https://doi.org/10.1016/j.neuron.2013.05.014
Wang H, Song KY, Feng J, et al. Caffeine Inhibits Activation of the NLRP3 Inflammasome via Autophagy to Attenuate Microglia-Mediated Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Journal of Molecular Neuroscience. 2021;72(1):97-112. doi:https://doi.org/10.1007/s12031-021-01894-8
Wilkaniec A, Cieślik M, Murawska E, et al. P2X7 Receptor is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells. International journal of molecular sciences. 2020;21(11):3959-3959. doi:https://doi.org/10.3390/ijms21113959
Wilkaniec A, Gąssowska M, Czapski GA, Cieślik M, Sulkowski G, Adamczyk A. P2X7 receptor-pannexin 1 interaction mediates extracellular alpha-synuclein-induced ATP release in neuroblastoma SH-SY5Y cells. Purinergic Signalling. 2017;13(3):347-361. doi:https://doi.org/10.1007/s11302-017-9567-2
Won L, Ding Y, Singh P, Kang UJ. Striatal Cholinergic Cell Ablation Attenuates L-DOPA Induced Dyskinesia in Parkinsonian Mice. Journal of Neuroscience. 2014;34(8):3090-3094. doi:https://doi.org/10.1523/jneurosci.2888-13.2014
Xu K, Di Luca DG, Orrú M, Xu Y, Chen JF ., Schwarzschild MA. Neuroprotection by caffeine in the MPTP model of parkinson’s disease and its dependence on adenosine A2A receptors. Neuroscience. 2016;322:129-137. doi:https://doi.org/10.1016/j.neuroscience.2016.02.035
Yasar Torres-Yaghi, Hattori N, Rascol O, et al. Istradefylline effects on tremor dominance (TD) and postural instability and gait difficulty (PIGD). Clinical Parkinsonism & Related Disorders. 2023;9:100224-100224. doi:https://doi.org/10.1016/j.prdoa.2023.100224
Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson’s disease. Current Opinion in Neurobiology. 2018;48:9-16. doi:https://doi.org/10.1016/j.conb.2017.08.004
Zhang J, Xu Q, Sun W, Zhou X, Fu D, Mao L. New Insights into the Role of NLRP3 Inflammasome in Pathogenesis and Treatment of Chronic Obstructive Pulmonary Disease. Journal of Inflammation Research. 2021;Volume 14:4155-4168. doi:https://doi.org/10.2147/jir.s324323
Zhang YF, Reynolds JNJ, Cragg SJ. Pauses in Cholinergic Interneuron Activity Are Driven by Excitatory Input and Delayed Rectification, with Dopamine Modulation. Neuron. 2018;98(5):918-925.e3. doi:https://doi.org/10.1016/j.neuron.2018.04.027
Zheng B, Liao Z, Locascio JJ, et al. PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease. Science translational medicine. 2010;2(52):52ra73. doi:https://doi.org/10.1126/scitranslmed.3001059
Zhou, Xie, Saw, et al. The Therapeutic Implications of Tea Polyphenols Against Dopamine (DA) Neuron Degeneration in Parkinson’s Disease (PD). Cells. 2019;8(8):911. doi:https://doi.org/10.3390/cells8080911
Zhuang X, Lemak J, Sridhar S, Nelson AB. Inhibition of Indirect Pathway Activity Causes Abnormal Decision-Making In a Mouse Model of Impulse Control Disorder in Parkinson’s Disease. bioRxiv (Cold Spring Harbor Laboratory). Published online February 22, 2024. doi:https://doi.org/10.1101/2024.02.19.581062
Baudrexel S, Witte T, Seifried C, et al. Resting state fMRI reveals increased subthalamic nucleus–motor cortex connectivity in Parkinson’s disease. NeuroImage. 2011;55(4):1728-1738. doi:https://doi.org/10.1016/j.neuroimage.2011.01.017
Boyle GJ, Northoff G, Barbey AK, et al. The Sage Handbook of Cognitive and Systems Neuroscience. SAGE Publications Limited; 2023.
Wilson CJ, Bevan MD. Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease. Neuroscience. 2011;198:54-68. doi:https://doi.org/10.1016/j.neuroscience.2011.06.049
Morin N, Morissette M, Grégoire L, Di Paolo T. mGlu5, Dopamine D2and Adenosine A2AReceptors in L-DOPA-induced Dyskinesias. Current neuropharmacology. 2016;14(5):481-493. doi:https://doi.org/10.2174/1570159x14666151201185652
Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Progress in Neurobiology. 2007;83(5):293-309. doi:https://doi.org/10.1016/j.pneurobio.2007.07.001
KASE H. New Aspects of Physiological and Pathophysiological Functions of Adenosine A2AReceptor in Basal Ganglia. Bioscience, Biotechnology, and Biochemistry. 2001;65(7):1447-1457. doi:https://doi.org/10.1271/bbb.65.1447
Ochi M, Koga K, Kurokawa M, Kase H, Nakamura J, Kuwana Y. Systemic administration of adenosine A2A receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience. 2000;100(1):53-62. doi:https://doi.org/10.1016/s0306-4522(00)00250-5
Xiao D, Bastia E, Xu YH, et al. Forebrain Adenosine A2AReceptors Contribute to l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia in Hemiparkinsonian Mice. The Journal of neuroscience. 2006;26(52):13548-13555. doi:https://doi.org/10.1523/jneurosci.3554-06.2006
Bibbiani F, Oh JD, Petzer JP, et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Experimental Neurology. 2003;184(1):285-294. doi:https://doi.org/10.1016/s0014-4886(03)00250-4
Salamone J D. Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Frontiers in Bioscience. 2008;Volume(13):3594. doi:https://doi.org/10.2741/2952
Wills AM, Eberly S, Tennis M, et al. Caffeine consumption and risk of dyskinesia in CALM-PD. 2013;28(3):380-383. doi:https://doi.org/10.1002/mds.25319
Méneret A, Mohammad SS, Cif L, et al. Efficacy of Caffeine in ADCY5 ‐Related Dyskinesia: A Retrospective Study. 2022;37(6):1294-1298. doi:https://doi.org/10.1002/mds.29006
Aristieta A, Azkona G, Sagarduy A, et al. The Role of the Subthalamic Nucleus in L-DOPA Induced Dyskinesia in 6-Hydroxydopamine Lesioned Rats. PLOS ONE. 2012;7(8):e42652-e42652. doi:https://doi.org/10.1371/journal.pone.0042652
Ludtmann MHR, Angelova PR, Horrocks MH, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nature Communications. 2018;9(1). doi:https://doi.org/10.1038/s41467-018-04422-2
Gonçalves FQ, Matheus FC, Silva HB, et al. Increased ATP Release and Higher Impact of Adenosine A2A Receptors on Corticostriatal Plasticity in a Rat Model of Presymptomatic Parkinson’s Disease. Molecular Neurobiology. 2022;60(3):1659-1674. doi:https://doi.org/10.1007/s12035-022-03162-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anna Wójcik, Aleksander Górny, Justyna Chwiejczak, Julita Młynarska, Jan Kościan, Karolina Szczerkowska, Anna Seroka, Maria Mitkowska, Maria Rybicka, Michał Obrębski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 157
Number of citations: 0