The use of artificial intelligence in the diagnosis and detection of complications of diabetes
DOI:
https://doi.org/10.12775/JEHS.2024.65.001Keywords
Artificial Intelligence, machine learning, deep learning, diabetesAbstract
Introduction: Diabetes poses a significant global health challenge, impacting patient well-being and longevity. Despite advances in diagnosis and treatment, the prevalence of diabetes continues to rise, with projections indicating a substantial increase in affected individuals in the coming years. The complications of diabetes, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, underscore the importance of early detection and management. In this context, artificial intelligence (AI) offers promising opportunities to revolutionize diabetes care, enabling faster diagnostics, more effective treatment strategies.
Description of the State of Knowledge: Artificial intelligence (AI) has emerged as a transformative force in healthcare, leveraging machine learning and deep learning algorithms to analyze vast amounts of medical data. These algorithms enable more accurate diagnosis, prediction of disease onset, and early detection of complications associated with diabetes. Machine learning models, including support vector machines and neural networks, have shown promise in identifying diabetes risk factors and predicting disease progression. Deep learning techniques, with their ability to analyze complex data patterns, offer further insights into diabetes diagnosis. Additionally, fuzzy cognitive maps provide a framework for decision-making based on patient data, enhancing early detection efforts.
Summary: Artificial intelligence holds immense potential to transform diabetes care, offering solutions for early detection, personalized treatment, and improved patient outcomes. By harnessing the power of AI algorithms, healthcare providers can enhance diagnostic accuracy, predict disease progression, and implement targeted interventions.
References
Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & Al Kaabi, J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. Journal of Epidemiology and Global Health. 2019;10(1), 107. https://doi.org/10.2991/jegh.k.191028.001
Sims, E.K., Carr, A.L.J., Oram, R.A. et al. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med 27, 1154–1164 (2021). https://doi.org/10.1038/s41591-021-01418-2
IDF Diabetes Atlas (10th edition). International Diabetes Federation. 2021. URL: https://diabetesatlas.org/atlas/tenth-edition/ [Access: 23.01.2024]
Ahmed, A., Aziz, S., Abd-alrazaq, A., Farooq, F., Sheikh, J. Overview of Artificial Intelligence–Driven Wearable Devices for Diabetes: Scoping Review. Journal of Medical Internet Research, 24(8), 2022. https://doi.org/10.2196/36010
Dal Canto E, Ceriello A, Rydén L, Ferrini M, Hansen TB, Schnell O, Standl E, Beulens JW. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019 Dec;26(2_suppl):25-32. https://doi.org/10.1177/2047487319878371
Lakhani, Om J. Artificial Intelligence in Diabetes Management and Research. Chronicle of Diabetes Research and Practice 3(1):p 5-7, Jan–Jun 2024. https://doi.org/10.4103/cdrp.cdrp_14_23
Huang J, Yeung AM, Armstrong DG, Battarbee AN, Cuadros J, Espinoza JC, Kleinberg S, Mathioudakis N, Swerdlow MA, Klonoff DC. Artificial Intelligence for Predicting and Diagnosing Complications of Diabetes. J Diabetes Sci Technol. 2023 Jan;17(1):224-238. https://doi: 10.1177/19322968221124583
Briganti, G. Artificial intelligence: An introduction for clinicians. Revue des Maladies Respiratoires. Volume 40, Issue 4, April 2023, Pages 308-313. https://doi.org/10.1016/j.rmr.2023.02.005
Iqbal, J., Cortés Jaimes, D. C., Makineni, P., Subramani, S., Hemaida, S., Thugu, T. R., Butt, A. N., Sikto, J. T., Kaur, P., Lak, M. A., Augustine, M., Shahzad, R., & Arain, M. Reimagining Healthcare: Unleashing the Power of Artificial Intelligence in Medicine. Cureus. 2023 Sep; 15(9). https://doi.org/10.7759/cureus.44658
Thomas, B., Mastorides, S., Viswanadhan, N., Jakey, C., Borkowski, A. Artificial Intelligence: Review of Current and Future Applications in Medicine. Federal Practitioner, 2021 Nov; 38(11): 527–538.. https://doi.org/10.12788/fp.0174
Briganti, G., Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine. Volume 7 - 2020. https://doi.org/10.3389/fmed.2020.00027
Cambuli, V. M., Baroni, M. G. Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up? International Journal of Molecular Sciences,. 2023, 24(17), 13139. https://doi.org/10.3390/ijms241713139
American Diabetes Association. Standards of Medical Care in Diabetes. Diabetes Care. 2009 Jan; 32(Suppl 1): S13–S61. https://doi.org/10.2337/dc09-s013
Chou, C.-Y., Hsu, D.-Y., Chou, C.-H. Predicting the Onset of Diabetes with Machine Learning Methods. Journal of Personalized Medicine, 2023, 13(3), 406. https://doi.org/10.3390/jpm13030406
Alzyoud, M., Alazaidah, R., Aljaidi, M., Samara, G., Qasem, M. H., Khalid, M., & Al-Shanableh. Diagnosing diabetes mellitus using machine learning techniques. International Journal of Data and Network Science, 8, (2024), 179–188. https://doi.org/10.5267/j.ijdns.2023.10.006
Nomura, A., Noguchi, M., Kometani, M. et al. Artificial Intelligence in Current Diabetes Management and Prediction. Curr Diab Rep 21, 61 (2021). https://doi.org/10.1007/s11892-021-01423-2
Abbasi, A., Peelen, L. M., Corpeleijn, E., van der Schouw, Y. T., Stolk, R. P., Spijkerman, A. M. W., van der A, D. L., Moons, K. G. M., Navis, G., Bakker, S. J. L., Beulens, J. W. J. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ 2012; 345. https://doi.org/10.1136/bmj.e5900
Ellahham, S. Artificial Intelligence: The Future for Diabetes Care. The American Journal of Medicine. Volume 133, Issue 8, August 2020, Pages 895-900. https://doi.org/10.1016/j.amjmed.2020.03.033
Kaul, S., Kumar, Y. Artificial Intelligence-based Learning Techniques for Diabetes Prediction: Challenges and Systematic Review. SN COMPUT. SCI. 1, 322 (2020). https://doi.org/10.1007/s42979-020-00337-2
Rene Y. Choi, Aaron S. Coyner, Jayashree Kalpathy-Cramer, Michael F. Chiang, J. Peter Campbell; Introduction to Machine Learning, Neural Networks, and Deep Learning. Trans. Vis. Sci. Tech. 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14
Zhang, Z., Ahmed, K.A., Hasan, M., Gedeon, T., & Hossain, M.Z. (2024). A Deep Learning Approach to Diabetes Diagnosis. 12 March 2024. https://doi.org/10.48550/arXiv.2403.07483
Apostolopoulos, I. D., Papandrianos, N. I., Papathanasiou, N. D., & Papageorgiou, E. I. Fuzzy Cognitive Map Applications in Medicine over the Last Two Decades: A Review Study. Bioengineering, 2024 Jan 30;11(2):139. https://doi.org/10.3390/bioengineering11020139
Giles BG, Findlay CS, Haas G, LaFrance B, Laughing W, Pembleton S. Integrating conventional science and aboriginal perspectives on diabetes using fuzzy cognitive maps. Soc Sci Med. 2007;64:562-76. https://doi.org/10.1016/j.socscimed.2006.09.007
Hoyos, W., Hoyos, K., & Ruiz-Pérez, R. Modelo de inteligencia artificial para la detección temprana de diabetes. Biomédica, 2023, 43(Sp. 3), 110–121. https://doi.org/10.7705/biomedica.7147
Zou Q, Qu K, Luo Y, et al. Predicting diabetes mellitus with machine learning techniques. Front Genet. 2018;9:515. https://doi.org/10.3389/fgene.2018.00515
Choi BG, Rha SW, Kim SW, Kang JH, Park JY, Noh YK. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks. Yonsei Med J. 2019 Feb;60(2):191-199. https://doi.org/10.3349/ymj.2019.60.2.191
Lai H, Huang H, Keshavjee K, et al. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr Disord. 2019;19(1):101. https://doi.org/10.1186/s12902-019-0436-6
Kopitar, L., Kocbek, P., Cilar, L. et al. Early detection of type 2 diabetes mellitus using machine learning-based prediction models. Sci Rep. 2020, 10, 11981. https://doi.org/10.1038/s41598-020-68771-z
Zhang L, Wang Y, Niu M, et al. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study. Sci Rep. 2020, 10(1):4406. https://doi.org/10.1038/s41598-020-61123-x.
Nomura, A., Yamamoto, S., Hayakawa, Y., et al. SAT-LB121 Development of a Machine-Learning Method for Predicting New Onset of Diabetes Mellitus: A Retrospective Analysis of 509,153 Annual Specific Health Checkup Records. Journal of the Endocrine Society, 2020, 4(1). https://doi.org/10.1210/jendso/bvaa046.2194
Ravaut M, Harish V, Sadeghi H, et al. Development and validation of a machine learning model using administrative health data to predict onset of type 2 diabetes. JAMA Netw Open. 2021;4(5): e2111315. https://doi.org/10.1001/jamanetworkopen.2021.11315
Chun, J.-W., Kim, H.-S. The Present and Future of Artificial Intelligence-Based Medical Image in Diabetes Mellitus: Focus on Analytical Methods and Limitations of Clinical Use. Journal of Korean Medical Science, 2023 38(31). https://doi.org/10.3346/jkms.2023.38.e253
Poly, T. N., Islam, M. M., Walther, B. A., Lin, M. C., Li, Y.-C. (. (2023). Artificial Intelligence in Diabetic Retinopathy: Bibliometric Analysis. Computer Methods and Programs in Biomedicine. Volume 231, April 2023, 107358. https://doi.org/10.1016/j.cmpb.2023.107358
Grzybowski, A., Singhanetr, P., Nanegrungsunk, O. et al. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmol Ther 12, 1419–1437 (2023). https://doi.org/10.1007/s40123-023-00691-3
Makino, M., Yoshimoto, R., Ono, M., Itoko, T., Katsuki, T., Koseki, A., Kudo, M., Haida, K., Kuroda, J., Yanagiya, R., Saitoh, E., Hoshinaga, K., Yuzawa, Y., Suzuki, A. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019 Aug 14;9(1):11862. https://doi.org/10.1038/s41598-019-48263-5
Chan, L., Nadkarni, G. N., Fleming, F., McCullough, J. R., Connolly, P., Mosoyan, G., El Salem, F., Kattan, M. W., Vassalotti, J. A., Murphy, B., Donovan, M. J., Coca, S. G., Damrauer, S. M. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease. Diabetologia. 2021 Jul; 64(7): 1504-1515. https://doi.org/10.1007/s00125-021-05444-0
Kitamura, S., Takahashi, K., Sang, Y., Fukushima, K., Tsuji, K., Wada, J. Deep Learning Could Diagnose Diabetic Nephropathy with Renal Pathological Immunofluorescent Images. Diagnostics (Basel). 2020 Jul; 10(7): 466. https://doi.org/10.3390/diagnostics10070466
Belur Nagaraj, S., Pena, M. J., Ju, W., Heerspink, H. L. Machine‐learning–based early prediction of end‐stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020 Dec; 22(12): 2479–2486. https://doi.org/10.1111/dom.14178
Xie, P., Li, Y., Deng, B., Du, C., Rui, S., Deng, W., Wang, M., Boey, J., Armstrong, D. G., Ma, Y., Deng, W. An explainable machine learning model for predicting in‐hospital amputation rate of patients with diabetic foot ulcer. International Wound Journal. 2022 May; 19(4): 910–918. https://doi.org/10.1111/iwj.13691
Goyal, M., Reeves, N. D., Rajbhandari, S., Yap, M. H. Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE Journal of Biomedical and Health Informatics. 2019 Jul;23(4):1730-1741. https://doi.org/10.1109/jbhi.2018.2868656
Yap, M. H., Chatwin, K. E., Ng, C.-C., Abbott, C. A., Bowling, F. L., Rajbhandari, S., Boulton, A. J. M., Reeves, N. D. A New Mobile Application for Standardizing Diabetic Foot Images. Journal of Diabetes Science and Technology. 2018 Jan; 12(1): 169–173. https://doi.org/10.1177/1932296817713761
Stefanopoulos S, Ayoub S, Qiu Q, et al. Machine learning prediction of diabetic foot ulcers in the inpatient population. Vascular. 2022;30(6):1115-1123. https://doi.org/10.1177/17085381211040984
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seweryn Ziajor, Justyna Tomasik, Piotr Sajdak, Mikołaj Turski, Artur Bednarski, Marcel Stodolak, Łukasz Szydłowski, Klaudia Żurowska, Aleksandra Krużel, Kamil Kłos, Marika Dębik
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 303
Number of citations: 0