Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

The use of artificial intelligence in the diagnosis and detection of complications of diabetes
  • Home
  • /
  • The use of artificial intelligence in the diagnosis and detection of complications of diabetes
  1. Home /
  2. Archives /
  3. Vol. 65 (2024) /
  4. Medical Sciences

The use of artificial intelligence in the diagnosis and detection of complications of diabetes

Authors

  • Seweryn Ziajor Medical Center in Łańcut, Poland https://orcid.org/0000-0001-8430-1764
  • Justyna Tomasik Medical University of Lublin, Poland https://orcid.org/0000-0001-6114-6992
  • Piotr Sajdak Medical Center in Łańcut, Poland https://orcid.org/0009-0001-1771-8874
  • Mikołaj Turski E. Szczeklik Specialist Hospital, Tarnów, Poland https://orcid.org/0009-0003-7548-939X
  • Artur Bednarski University Teaching Hospital them F. Chopin in Rzeszów, Poland https://orcid.org/0000-0002-1505-9465
  • Marcel Stodolak E. Szczeklik Specialist Hospital, Tarnów, Poland https://orcid.org/0009-0002-8315-3549
  • Łukasz Szydłowski Polish Red Cross Maritime Hospital, Gdynia, Poland https://orcid.org/0009-0001-1667-251X
  • Klaudia Żurowska Lower Silesian Specialist Hospital Emergency Medicine Center, Wrocław, Poland https://orcid.org/0009-0005-4431-767X
  • Aleksandra Krużel Medical University of Silesia, Katowice, Poland https://orcid.org/0009-0002-5538-9220
  • Kamil Kłos Medical University of Silesia, Katowice, Poland https://orcid.org/0009-0002-5308-0940
  • Marika Dębik Provincial Specialist Hospital in Wrocław, Poland https://orcid.org/0009-0006-7504-5184

DOI:

https://doi.org/10.12775/JEHS.2024.65.001

Keywords

Artificial Intelligence, machine learning, deep learning, diabetes

Abstract

Introduction: Diabetes poses a significant global health challenge, impacting patient well-being and longevity. Despite advances in diagnosis and treatment, the prevalence of diabetes continues to rise, with projections indicating a substantial increase in affected individuals in the coming years. The complications of diabetes, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, underscore the importance of early detection and management. In this context, artificial intelligence (AI) offers promising opportunities to revolutionize diabetes care, enabling faster diagnostics, more effective treatment strategies.

Description of the State of Knowledge: Artificial intelligence (AI) has emerged as a transformative force in healthcare, leveraging machine learning and deep learning algorithms to analyze vast amounts of medical data. These algorithms enable more accurate diagnosis, prediction of disease onset, and early detection of complications associated with diabetes. Machine learning models, including support vector machines and neural networks, have shown promise in identifying diabetes risk factors and predicting disease progression. Deep learning techniques, with their ability to analyze complex data patterns, offer further insights into diabetes diagnosis. Additionally, fuzzy cognitive maps provide a framework for decision-making based on patient data, enhancing early detection efforts.

Summary: Artificial intelligence holds immense potential to transform diabetes care, offering solutions for early detection, personalized treatment, and improved patient outcomes. By harnessing the power of AI algorithms, healthcare providers can enhance diagnostic accuracy, predict disease progression, and implement targeted interventions.

References

Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & Al Kaabi, J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. Journal of Epidemiology and Global Health. 2019;10(1), 107. https://doi.org/10.2991/jegh.k.191028.001

Sims, E.K., Carr, A.L.J., Oram, R.A. et al. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med 27, 1154–1164 (2021). https://doi.org/10.1038/s41591-021-01418-2

IDF Diabetes Atlas (10th edition). International Diabetes Federation. 2021. URL: https://diabetesatlas.org/atlas/tenth-edition/ [Access: 23.01.2024]

Ahmed, A., Aziz, S., Abd-alrazaq, A., Farooq, F., Sheikh, J. Overview of Artificial Intelligence–Driven Wearable Devices for Diabetes: Scoping Review. Journal of Medical Internet Research, 24(8), 2022. https://doi.org/10.2196/36010

Dal Canto E, Ceriello A, Rydén L, Ferrini M, Hansen TB, Schnell O, Standl E, Beulens JW. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019 Dec;26(2_suppl):25-32. https://doi.org/10.1177/2047487319878371

Lakhani, Om J. Artificial Intelligence in Diabetes Management and Research. Chronicle of Diabetes Research and Practice 3(1):p 5-7, Jan–Jun 2024. https://doi.org/10.4103/cdrp.cdrp_14_23

Huang J, Yeung AM, Armstrong DG, Battarbee AN, Cuadros J, Espinoza JC, Kleinberg S, Mathioudakis N, Swerdlow MA, Klonoff DC. Artificial Intelligence for Predicting and Diagnosing Complications of Diabetes. J Diabetes Sci Technol. 2023 Jan;17(1):224-238. https://doi: 10.1177/19322968221124583

Briganti, G. Artificial intelligence: An introduction for clinicians. Revue des Maladies Respiratoires. Volume 40, Issue 4, April 2023, Pages 308-313. https://doi.org/10.1016/j.rmr.2023.02.005

Iqbal, J., Cortés Jaimes, D. C., Makineni, P., Subramani, S., Hemaida, S., Thugu, T. R., Butt, A. N., Sikto, J. T., Kaur, P., Lak, M. A., Augustine, M., Shahzad, R., & Arain, M. Reimagining Healthcare: Unleashing the Power of Artificial Intelligence in Medicine. Cureus. 2023 Sep; 15(9). https://doi.org/10.7759/cureus.44658

Thomas, B., Mastorides, S., Viswanadhan, N., Jakey, C., Borkowski, A. Artificial Intelligence: Review of Current and Future Applications in Medicine. Federal Practitioner, 2021 Nov; 38(11): 527–538.. https://doi.org/10.12788/fp.0174

Briganti, G., Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine. Volume 7 - 2020. https://doi.org/10.3389/fmed.2020.00027

Cambuli, V. M., Baroni, M. G. Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up? International Journal of Molecular Sciences,. 2023, 24(17), 13139. https://doi.org/10.3390/ijms241713139

American Diabetes Association. Standards of Medical Care in Diabetes. Diabetes Care. 2009 Jan; 32(Suppl 1): S13–S61. https://doi.org/10.2337/dc09-s013

Chou, C.-Y., Hsu, D.-Y., Chou, C.-H. Predicting the Onset of Diabetes with Machine Learning Methods. Journal of Personalized Medicine, 2023, 13(3), 406. https://doi.org/10.3390/jpm13030406

Alzyoud, M., Alazaidah, R., Aljaidi, M., Samara, G., Qasem, M. H., Khalid, M., & Al-Shanableh. Diagnosing diabetes mellitus using machine learning techniques. International Journal of Data and Network Science, 8, (2024), 179–188. https://doi.org/10.5267/j.ijdns.2023.10.006

Nomura, A., Noguchi, M., Kometani, M. et al. Artificial Intelligence in Current Diabetes Management and Prediction. Curr Diab Rep 21, 61 (2021). https://doi.org/10.1007/s11892-021-01423-2

Abbasi, A., Peelen, L. M., Corpeleijn, E., van der Schouw, Y. T., Stolk, R. P., Spijkerman, A. M. W., van der A, D. L., Moons, K. G. M., Navis, G., Bakker, S. J. L., Beulens, J. W. J. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ 2012; 345. https://doi.org/10.1136/bmj.e5900

Ellahham, S. Artificial Intelligence: The Future for Diabetes Care. The American Journal of Medicine. Volume 133, Issue 8, August 2020, Pages 895-900. https://doi.org/10.1016/j.amjmed.2020.03.033

Kaul, S., Kumar, Y. Artificial Intelligence-based Learning Techniques for Diabetes Prediction: Challenges and Systematic Review. SN COMPUT. SCI. 1, 322 (2020). https://doi.org/10.1007/s42979-020-00337-2

Rene Y. Choi, Aaron S. Coyner, Jayashree Kalpathy-Cramer, Michael F. Chiang, J. Peter Campbell; Introduction to Machine Learning, Neural Networks, and Deep Learning. Trans. Vis. Sci. Tech. 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14

Zhang, Z., Ahmed, K.A., Hasan, M., Gedeon, T., & Hossain, M.Z. (2024). A Deep Learning Approach to Diabetes Diagnosis. 12 March 2024. https://doi.org/10.48550/arXiv.2403.07483

Apostolopoulos, I. D., Papandrianos, N. I., Papathanasiou, N. D., & Papageorgiou, E. I. Fuzzy Cognitive Map Applications in Medicine over the Last Two Decades: A Review Study. Bioengineering, 2024 Jan 30;11(2):139. https://doi.org/10.3390/bioengineering11020139

Giles BG, Findlay CS, Haas G, LaFrance B, Laughing W, Pembleton S. Integrating conventional science and aboriginal perspectives on diabetes using fuzzy cognitive maps. Soc Sci Med. 2007;64:562-76. https://doi.org/10.1016/j.socscimed.2006.09.007

Hoyos, W., Hoyos, K., & Ruiz-Pérez, R. Modelo de inteligencia artificial para la detección temprana de diabetes. Biomédica, 2023, 43(Sp. 3), 110–121. https://doi.org/10.7705/biomedica.7147

Zou Q, Qu K, Luo Y, et al. Predicting diabetes mellitus with machine learning techniques. Front Genet. 2018;9:515. https://doi.org/10.3389/fgene.2018.00515

Choi BG, Rha SW, Kim SW, Kang JH, Park JY, Noh YK. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks. Yonsei Med J. 2019 Feb;60(2):191-199. https://doi.org/10.3349/ymj.2019.60.2.191

Lai H, Huang H, Keshavjee K, et al. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr Disord. 2019;19(1):101. https://doi.org/10.1186/s12902-019-0436-6

Kopitar, L., Kocbek, P., Cilar, L. et al. Early detection of type 2 diabetes mellitus using machine learning-based prediction models. Sci Rep. 2020, 10, 11981. https://doi.org/10.1038/s41598-020-68771-z

Zhang L, Wang Y, Niu M, et al. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study. Sci Rep. 2020, 10(1):4406. https://doi.org/10.1038/s41598-020-61123-x.

Nomura, A., Yamamoto, S., Hayakawa, Y., et al. SAT-LB121 Development of a Machine-Learning Method for Predicting New Onset of Diabetes Mellitus: A Retrospective Analysis of 509,153 Annual Specific Health Checkup Records. Journal of the Endocrine Society, 2020, 4(1). https://doi.org/10.1210/jendso/bvaa046.2194

Ravaut M, Harish V, Sadeghi H, et al. Development and validation of a machine learning model using administrative health data to predict onset of type 2 diabetes. JAMA Netw Open. 2021;4(5): e2111315. https://doi.org/10.1001/jamanetworkopen.2021.11315

Chun, J.-W., Kim, H.-S. The Present and Future of Artificial Intelligence-Based Medical Image in Diabetes Mellitus: Focus on Analytical Methods and Limitations of Clinical Use. Journal of Korean Medical Science, 2023 38(31). https://doi.org/10.3346/jkms.2023.38.e253

Poly, T. N., Islam, M. M., Walther, B. A., Lin, M. C., Li, Y.-C. (. (2023). Artificial Intelligence in Diabetic Retinopathy: Bibliometric Analysis. Computer Methods and Programs in Biomedicine. Volume 231, April 2023, 107358. https://doi.org/10.1016/j.cmpb.2023.107358

Grzybowski, A., Singhanetr, P., Nanegrungsunk, O. et al. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmol Ther 12, 1419–1437 (2023). https://doi.org/10.1007/s40123-023-00691-3

Makino, M., Yoshimoto, R., Ono, M., Itoko, T., Katsuki, T., Koseki, A., Kudo, M., Haida, K., Kuroda, J., Yanagiya, R., Saitoh, E., Hoshinaga, K., Yuzawa, Y., Suzuki, A. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019 Aug 14;9(1):11862. https://doi.org/10.1038/s41598-019-48263-5

Chan, L., Nadkarni, G. N., Fleming, F., McCullough, J. R., Connolly, P., Mosoyan, G., El Salem, F., Kattan, M. W., Vassalotti, J. A., Murphy, B., Donovan, M. J., Coca, S. G., Damrauer, S. M. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease. Diabetologia. 2021 Jul; 64(7): 1504-1515. https://doi.org/10.1007/s00125-021-05444-0

Kitamura, S., Takahashi, K., Sang, Y., Fukushima, K., Tsuji, K., Wada, J. Deep Learning Could Diagnose Diabetic Nephropathy with Renal Pathological Immunofluorescent Images. Diagnostics (Basel). 2020 Jul; 10(7): 466. https://doi.org/10.3390/diagnostics10070466

Belur Nagaraj, S., Pena, M. J., Ju, W., Heerspink, H. L. Machine‐learning–based early prediction of end‐stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020 Dec; 22(12): 2479–2486. https://doi.org/10.1111/dom.14178

Xie, P., Li, Y., Deng, B., Du, C., Rui, S., Deng, W., Wang, M., Boey, J., Armstrong, D. G., Ma, Y., Deng, W. An explainable machine learning model for predicting in‐hospital amputation rate of patients with diabetic foot ulcer. International Wound Journal. 2022 May; 19(4): 910–918. https://doi.org/10.1111/iwj.13691

Goyal, M., Reeves, N. D., Rajbhandari, S., Yap, M. H. Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE Journal of Biomedical and Health Informatics. 2019 Jul;23(4):1730-1741. https://doi.org/10.1109/jbhi.2018.2868656

Yap, M. H., Chatwin, K. E., Ng, C.-C., Abbott, C. A., Bowling, F. L., Rajbhandari, S., Boulton, A. J. M., Reeves, N. D. A New Mobile Application for Standardizing Diabetic Foot Images. Journal of Diabetes Science and Technology. 2018 Jan; 12(1): 169–173. https://doi.org/10.1177/1932296817713761

Stefanopoulos S, Ayoub S, Qiu Q, et al. Machine learning prediction of diabetic foot ulcers in the inpatient population. Vascular. 2022;30(6):1115-1123. https://doi.org/10.1177/17085381211040984

Downloads

  • PDF

Published

2024-04-11

How to Cite

1.
ZIAJOR, Seweryn, TOMASIK, Justyna, SAJDAK, Piotr, TURSKI, Mikołaj, BEDNARSKI, Artur, STODOLAK, Marcel, SZYDŁOWSKI, Łukasz, ŻUROWSKA, Klaudia, KRUŻEL, Aleksandra, KŁOS, Kamil and DĘBIK, Marika. The use of artificial intelligence in the diagnosis and detection of complications of diabetes. Journal of Education, Health and Sport. Online. 11 April 2024. Vol. 65, pp. 11-27. [Accessed 24 May 2025]. DOI 10.12775/JEHS.2024.65.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 65 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Seweryn Ziajor, Justyna Tomasik, Piotr Sajdak, Mikołaj Turski, Artur Bednarski, Marcel Stodolak, Łukasz Szydłowski, Klaudia Żurowska, Aleksandra Krużel, Kamil Kłos, Marika Dębik

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 500
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Artificial Intelligence, machine learning, deep learning, diabetes
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop