Gut Microbiota and Its Implications for Cardiovascular Diseases – a Review
DOI:
https://doi.org/10.12775/JEHS.2024.62.009Keywords
Gut Microbiota, Cardiovascular Diseases, DysbiosisAbstract
Background: The symbiotic relationship between the gut microbiota and cardiovascular health has become a main point in contemporary research, offering valuable insights into the pathogenesis of cardiovascular diseases (CVDs). This review aims to comprehensively examine the bidirectional communication between gut microbial communities and the cardiovascular system, explaining the intricate mechanisms that connect gut dysbiosis to the initiation and progression of CVDs.
Material and Methods: A systematic literature review was conducted to compile and analyze relevant studies investigating the impact of the gut microbiota on cardiovascular health. Emphasis was placed on explaining the molecular and physiological mechanisms underlying the interaction between gut microbes and cardiovascular function.
Results: Our review confirmed evidence linking gut microbiota-derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide and lipopolysaccharides to vascular function and inflammation. Additionally, we explored the modulation of host metabolism and immune responses by gut microbes, providing insights into their roles in atherosclerosis and hypertension. The review highlight the influence of diet and lifestyle on shaping the gut microbiome and, consequently, cardiovascular outcomes.
Conclusions: Gut microbiota plays a crucial role in cardiovascular health and is involved in the start and development of various heart diseases. The identified molecular and physiological mechanisms highlight the need for complete understanding of the gut-cardiovascular axis. Moreover, the review emphasizes the potential of microbiota-targeted interventions, including probiotics and fecal microbiota transplantation, as innovative strategies for preventing and managing CVDs.
References
E. Rinninella et al., ‘What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases’, Microorganisms, vol. 7, no. 1, p. 14, Jan. 2019, doi: 10.3390/microorganisms7010014.
G. den Besten, K. van Eunen, A. K. Groen, K. Venema, D.-J. Reijngoud, and B. M. Bakker, ‘The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism’, J Lipid Res, vol. 54, no. 9, pp. 2325–2340, Sep. 2013, doi: 10.1194/jlr.R036012.
P. Markowiak-Kopeć and K. Śliżewska, ‘The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome’, Nutrients, vol. 12, no. 4, p. 1107, Apr. 2020, doi: 10.3390/nu12041107.
H. Wang, X. Huang, H. Tan, X. Chen, C. Chen, and S. Nie, ‘Interaction between dietary fiber and bifidobacteria in promoting intestinal health’, Food Chemistry, vol. 393, p. 133407, Nov. 2022, doi: 10.1016/j.foodchem.2022.133407.
G. Rizzatti, L. R. Lopetuso, G. Gibiino, C. Binda, and A. Gasbarrini, ‘Proteobacteria: A Common Factor in Human Diseases’, Biomed Res Int, vol. 2017, p. 9351507, 2017, doi: 10.1155/2017/9351507.
A. Madison and J. K. Kiecolt-Glaser, ‘Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology and nutrition’, Current Opinion in Behavioral Sciences, vol. 28, pp. 105–110, Aug. 2019, doi: 10.1016/j.cobeha.2019.01.011.
M. J. Bull and N. T. Plummer, ‘Part 1: The Human Gut Microbiome in Health and Disease’, Integr Med (Encinitas), vol. 13, no. 6, pp. 17–22, Dec. 2014.
L. Wen and A. Duffy, ‘Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes’, J Nutr, vol. 147, no. 7, pp. 1468S-1475S, Jul. 2017, doi: 10.3945/jn.116.240754.
F. Zhang, D. Fan, J. Huang, and T. Zuo, ‘The gut microbiome: linking dietary fiber to inflammatory diseases’, Medicine in Microecology, vol. 14, p. 100070, Dec. 2022, doi: 10.1016/j.medmic.2022.100070.
J. N. Losso, ‘Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages’, Annu Rev Food Sci Technol, vol. 12, pp. 235–258, Mar. 2021, doi: 10.1146/annurev-food-062520-090235.
V. Ronan, R. Yeasin, and E. C. Claud, ‘Childhood Development and the Microbiome: The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development’, Gastroenterology, vol. 160, no. 2, pp. 495–506, Jan. 2021, doi: 10.1053/j.gastro.2020.08.065.
D. V. Patangia, C. Anthony Ryan, E. Dempsey, R. Paul Ross, and C. Stanton, ‘Impact of antibiotics on the human microbiome and consequences for host health’, Microbiologyopen, vol. 11, no. 1, p. e1260, Jan. 2022, doi: 10.1002/mbo3.1260.
‘The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs - PMC’. Accessed: Dec. 03, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974203/
A. Piccioni et al., ‘Gut Microbiota and Environment in Coronary Artery Disease’, International Journal of Environmental Research and Public Health, vol. 18, no. 8, Art. no. 8, Jan. 2021, doi: 10.3390/ijerph18084242.
K. S. May and L. J. den Hartigh, ‘Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids’, Nutrients, vol. 13, no. 10, p. 3666, Oct. 2021, doi: 10.3390/nu13103666.
S. Al-Lahham et al., ‘Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects’, Eur J Clin Invest, vol. 42, no. 4, pp. 357–364, Apr. 2012, doi: 10.1111/j.1365-2362.2011.02590.x.
L. Hoyles et al., ‘Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota’, Microbiome, vol. 6, no. 1, p. 73, Apr. 2018, doi: 10.1186/s40168-018-0461-0.
Y. Zhu, Q. Li, and H. Jiang, ‘Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide’, APMIS, vol. 128, no. 5, pp. 353–366, May 2020, doi: 10.1111/apm.13038.
T. Li, Y. Chen, C. Gua, and X. Li, ‘Elevated Circulating Trimethylamine N-Oxide Levels Contribute to Endothelial Dysfunction in Aged Rats through Vascular Inflammation and Oxidative Stress’, Front Physiol, vol. 8, p. 350, May 2017, doi: 10.3389/fphys.2017.00350.
R.-H. Chou et al., ‘Trimethylamine N-Oxide, Circulating Endothelial Progenitor Cells, and Endothelial Function in Patients with Stable Angina’, Sci Rep, vol. 9, p. 4249, Mar. 2019, doi: 10.1038/s41598-019-40638-y.
‘Lipopolysaccharide and the gut microbiota: considering structural variation - Mohr - 2022 - FEBS Letters - Wiley Online Library’. Accessed: Dec. 03, 2023. [Online]. Available: https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14328
A. Ciesielska, M. Matyjek, and K. Kwiatkowska, ‘TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling’, Cell Mol Life Sci, vol. 78, no. 4, pp. 1233–1261, 2021, doi: 10.1007/s00018-020-03656-y.
A. M. Gorabi et al., ‘Implications for the role of lipopolysaccharide in the development of atherosclerosis’, Trends in Cardiovascular Medicine, vol. 32, no. 8, pp. 525–533, Nov. 2022, doi: 10.1016/j.tcm.2021.08.015.
D. Jiang, Y. Yang, and D. Li, ‘Lipopolysaccharide induced vascular smooth muscle cells proliferation: A new potential therapeutic target for proliferative vascular diseases’, Cell Prolif, vol. 50, no. 2, p. e12332, Feb. 2017, doi: 10.1111/cpr.12332.
A. Oniszczuk, T. Oniszczuk, M. Gancarz, and J. Szymańska, ‘Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases’, Molecules, vol. 26, no. 4, p. 1172, Feb. 2021, doi: 10.3390/molecules26041172.
M. Papizadeh, M. Rohani, H. Nahrevanian, A. Javadi, and M. R. Pourshafie, ‘Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends’, Microb Pathog, vol. 111, pp. 118–131, Oct. 2017, doi: 10.1016/j.micpath.2017.08.021.
F. Cristofori, V. N. Dargenio, C. Dargenio, V. L. Miniello, M. Barone, and R. Francavilla, ‘Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body’, Front Immunol, vol. 12, p. 578386, 2021, doi: 10.3389/fimmu.2021.578386.
R. Nagpal, A. Kumar, M. Kumar, P. V. Behare, S. Jain, and H. Yadav, ‘Probiotics, their health benefits and applications for developing healthier foods: a review’, FEMS Microbiology Letters, vol. 334, no. 1, pp. 1–15, Sep. 2012, doi: 10.1111/j.1574-6968.2012.02593.x.
T. Zhai, P. Wang, X. Hu, and L. Zheng, ‘Probiotics Bring New Hope for Atherosclerosis Prevention and Treatment’, Oxid Med Cell Longev, vol. 2022, p. 3900835, Sep. 2022, doi: 10.1155/2022/3900835.
M. Mahdavi-Roshan, A. Salari, J. Kheirkhah, and Z. Ghorbani, ‘The Effects of Probiotics on Inflammation, Endothelial Dysfunction, and Atherosclerosis Progression: A Mechanistic Overview’, Heart, Lung and Circulation, vol. 31, no. 5, pp. e45–e71, May 2022, doi: 10.1016/j.hlc.2021.09.006.
A. P. Kaur et al., ‘Plant Prebiotics and Their Role in the Amelioration of Diseases’, Biomolecules, vol. 11, no. 3, p. 440, Mar. 2021, doi: 10.3390/biom11030440.
P. SREDKOVA, T. BATSALOVA, D. MOTEN, and B. DZHAMBAZOV, ‘Prebiotics can change immunomodulatory properties of probiotics’, Cent Eur J Immunol, vol. 45, no. 3, pp. 248–255, 2020, doi: 10.5114/ceji.2020.101237.
H. Wu and J. Chiou, ‘Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke’, Nutrients, vol. 13, no. 8, p. 2878, Aug. 2021, doi: 10.3390/nu13082878.
A. Twardowska, A. Makaro, A. Binienda, J. Fichna, and M. Salaga, ‘Preventing Bacterial Translocation in Patients with Leaky Gut Syndrome: Nutrition and Pharmacological Treatment Options’, Int J Mol Sci, vol. 23, no. 6, p. 3204, Mar. 2022, doi: 10.3390/ijms23063204.
S.-K. Yeo, L.-G. Ooi, T.-J. Lim, and M.-T. Liong, ‘Antihypertensive Properties of Plant-Based Prebiotics’, Int J Mol Sci, vol. 10, no. 8, pp. 3517–3530, Aug. 2009, doi: 10.3390/ijms10083517.
Y. Guo et al., ‘Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice’, Eur J Nutr, vol. 60, no. 4, pp. 2217–2230, 2021, doi: 10.1007/s00394-020-02414-x.
K. Gupta et al., ‘Fecal Microbiota Transplant in Recurrent Clostridium Difficile Infections: A Systematic Review’, Cureus, vol. 14, no. 5, p. e24754, May 2022, doi: 10.7759/cureus.24754.
A. Khoruts and M. J. Sadowsky, ‘Understanding the mechanisms of faecal microbiota transplantation’, Nat Rev Gastroenterol Hepatol, vol. 13, no. 9, pp. 508–516, Sep. 2016, doi: 10.1038/nrgastro.2016.98.
Z. Zhang et al., ‘Impact of Fecal Microbiota Transplantation on Obesity and Metabolic Syndrome—A Systematic Review’, Nutrients, vol. 11, no. 10, p. 2291, Sep. 2019, doi: 10.3390/nu11102291.
E. Szczepańska, A. Białek-Dratwa, B. Janota, and O. Kowalski, ‘Dietary Therapy in Prevention of Cardiovascular Disease (CVD)-Tradition or Modernity? A Review of the Latest Approaches to Nutrition in CVD’, Nutrients, vol. 14, no. 13, p. 2649, Jun. 2022, doi: 10.3390/nu14132649.
X. Zhang and P. Gérard, ‘Diet-gut microbiota interactions on cardiovascular disease’, Comput Struct Biotechnol J, vol. 20, pp. 1528–1540, Mar. 2022, doi: 10.1016/j.csbj.2022.03.028.
S. K. Masenga et al., ‘Recent advances in modulation of cardiovascular diseases by the gut microbiota’, J Hum Hypertens, vol. 36, no. 11, Art. no. 11, Nov. 2022, doi: 10.1038/s41371-022-00698-6.
K. N. Prasad and S. C. Bondy, ‘Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases’, Bioactive Carbohydrates and Dietary Fibre, vol. 17, p. 100170, Jan. 2019, doi: 10.1016/j.bcdf.2018.09.001.
S. A. de Queiroz Cavalcanti, L. A. de Almeida, and J. Gasparotto, ‘Effects of a high saturated fatty acid diet on the intestinal microbiota modification and associated impacts on Parkinson’s disease development’, Journal of Neuroimmunology, vol. 382, p. 578171, Sep. 2023, doi: 10.1016/j.jneuroim.2023.578171.
P. J. Wisniewski, R. A. Dowden, and S. C. Campbell, ‘Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota’, Nutrients, vol. 11, no. 1, p. 117, Jan. 2019, doi: 10.3390/nu11010117.
T. P. M. Scheithauer et al., ‘Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes’, Front Immunol, vol. 11, p. 571731, Oct. 2020, doi: 10.3389/fimmu.2020.571731.
M.-C. Simon, C. Sina, P. G. Ferrario, H. Daniel, and W. G. “Personalized N. of the G. N. Society, ‘Gut Microbiome Analysis for Personalized Nutrition: The State of Science’, Molecular Nutrition & Food Research, vol. 67, no. 1, p. 2200476, 2023, doi: 10.1002/mnfr.202200476.
H. C. Wastyk et al., ‘Gut Microbiota-Targeted Diets Modulate Human Immune Status’, Cell, vol. 184, no. 16, pp. 4137-4153.e14, Aug. 2021, doi: 10.1016/j.cell.2021.06.019.
‘Nutritional Psychiatry: How Diet Affects Brain through Gut Microbiota - PubMed’. Accessed: Dec. 04, 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/33919680/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Julia Zarębska, Julia Krasnoborska, Sylwia Samojedny, Maciej Superson, Katarzyna Szmyt, Katarzyna Szymańska, Kamil Walczak, Klaudia Wilk-Trytko, Łukasz Zarębski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 422
Number of citations: 0