Microbiota and depressive disorders – a review
DOI:
https://doi.org/10.12775/JEHS.2024.60.013Keywords
Gut Microbiome, fecal microbiota, depression treatment, Depression, ProbioticsAbstract
Introduction: Depression, affecting 1 in 8 individuals with a 27.6% rise during COVID-19, prompts an exploration of the gut-brain-microbiota axis's role in mental health, focusing on depression.
State of Knowledge: The gut microbiota regulates the brain-gut axis, impacting neurotransmitter production. Dysbiosis correlates with depressive behaviors. Factors like short-chain fatty acids and neurotrophins play roles in gut-brain communication.
Materials and method: A literature review was conducted using the “PubMed” and “Google Scholar” databases with the keywords “Gut microbiota”, “Fecal microbiota”, “Depression and microbiota”, “Depression”, „Probiotics role”, „Mental health and priobiotics”, „Probiotics and prebiotics”, „Prebiotics and brain”.
Summary: Altered gut microbiota links to psychiatric disorders, disrupting composition stability by age three through antibiotic use. Imbalances impact neurotransmitters and inflammation, crucial in depression pathophysiology.
Treatment and Impact on Gut Microbiota: Antidepressants affect gut microbiota diversity bidirectionally, offering potential tailored therapies. The Mediterranean diet correlates with lower depression risk. Excessive sugar intake triggers neuroinflammation.
Fecal Microbiota Transplantation: FMT emerges as a promising depression treatment, reshaping gut microbiota and modulating the gut-brain axis. Lactobacillus and Bifidobacterium spp. show potential in mitigating depression symptoms. FOS and GOS positively influence gut microbiota.
Conclusion: This review underscores the intricate gut-brain-microbiota axis in depression, suggesting personalized therapeutic approaches for effective management.
References
Mental Health and COVID-19: Scientific Brief.
Depression. Accessed December 25, 2023. https://www.who.int/health-topics/ depression#tab=tab_1
Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. The gut microbiota in anxiety and depression – A systematic review. Clin Psychol Rev. 2021;83:101943. doi:10.1016/J.CPR.2020.101943
Trzeciak P, Herbet M. Role of the intestinal microbiome, intestinal barrier and psychobiotics in depression. Nutrients. 2021;13(3):1-27. doi:10.3390/nu13030927
Chang L, Wei Y, Hashimoto K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull. 2022;182:44-56. doi:10.1016/j.brainresbull.2022.02.004 6. Joanna Podgórska. Tak działa mózg. :261-273.
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8836-8847. doi:10.3748/ wjg.v21.i29.8787
Lurie I, Yang YX, Haynes K, Mamtani R, Boursi B. Antibiotic Exposure and the Risk for Depression, Anxiety, or Psychosis: A Nested Case-Control Study. J Clin Psychiatry. 2015;76(11):825. doi:10.4088/JCP.15M09961
Köhler O, Petersen L, Mors O, et al. Infections and exposure to anti-infective agents and the risk of severe mental disorders: a nationwide study. Acta Psychiatr Scand. 2017;135(2):97-105. doi:10.1111/ACPS.12671
Liu L, Wang H, Zhang H, et al. Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. Advanced Science. 2022;9(35). doi:10.1002/ advs.202203707
Yang J, Zheng P, Li Y, et al. Landscapes of Bacterial and Metabolic Signatures and Their Interaction in Major Depressive Disorders. Vol 6.; 2020. https://www.science.org 12. Nikolova VL, Hall MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-analysis. JAMA Psychiatry. 2021;78(12):1343-1354. doi:10.1001/jamapsychiatry.2021.2573
Liu L, Wang H, Zhang H, et al. Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. Advanced Science. 2022;9(35). doi:10.1002/ advs.202203707
Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology 2022 20:12. 2022;20(12):707-720. doi:10.1038/s41579-022-00768-z
Yang Y, Nguyen M, Khetrapal V, et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 2022 607:7919. 2022;607(7919):563-570. doi:10.1038/ s41586-022-04949-x
Jiang H yin, Pan L ya, Zhang X, Zhang Z, Zhou Y yue, Ruan B. Altered gut bacterial–fungal interkingdom networks in patients with current depressive episode. Brain Behav. 2020;10(8). doi:10.1002/brb3.1677
Skonieczna-żydecka K, Grochans E, Maciejewska D, et al. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients. 2018;10(12). doi:10.3390/nu10121939 18. Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry 2016 21:6. 2016;21(6):786-796. doi:10.1038/mp.2016.44
Van de Wouw M, Boehme M, Lyte JM, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. Journal of Physiology. 2018;596(20):4923-4944. doi:10.1113/JP276431
Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microbial Cell. 2019;6(10):454. doi:10.15698/ MIC2019.10.693
Meinitzer S, Baranyi A, Holasek S, et al. Sex-specific associations of trimethylamine-N-oxide and zonulin with signs of depression in carbohydrate malabsorbers and nonmalabsorbers. Dis Markers. 2020;2020. doi:10.1155/2020/7897240
Ortega MA, Alvarez-Mon MA, García-Montero C, et al. Gut Microbiota Metabolites in Major Depressive Disorder—Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites. 2022;12(1). doi:10.3390/metabo12010050
Li T, Zheng LN, Han XH. Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomedicine and Pharmacotherapy. 2020;125. doi:10.1016/j.biopha.2019.109680
Meinitzer S, Baranyi A, Holasek S, et al. Sex-specific associations of trimethylamine-N-oxide and zonulin with signs of depression in carbohydrate malabsorbers and nonmalabsorbers. Dis Markers. 2020;2020. doi:10.1155/2020/7897240
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 2012 13:10. 2012;13(10):701-712. doi:10.1038/ nrn3346
Kronsten VT, Tranah TH, Pariante C, Shawcross DL. Gut-derived systemic inflammation as a driver of depression in chronic liver disease. J Hepatol. 2022;76(3):665-680. doi:10.1016/ J.JHEP.2021.11.008
Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol. 2021;11(5):1463-1482. doi:10.1016/ J.JCMGH.2021.02.007
Slyepchenko A, Maes M, Jacka FN, et al. Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non Communicable Medical Comorbidities. Psychother Psychosom. 2016;86(1):31-46. doi:10.1159/000448957
Kiecolt-Glaser JK, Wilson SJ, Bailey ML, et al. Marital distress, depression, and a leaky gut: Translocation of bacterial endotoxin as a pathway to inflammation. Psychoneuroendocrinology. 2018;98:52-60. doi:10.1016/J.PSYNEUEN.2018.08.007
Fried S, Wemelle E, Cani PD, Knauf C. Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology. 2021;197:108721. doi:10.1016/J.NEUROPHARM.2021.108721
Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry. 2020;10(1). doi:10.1038/ s41398-020-00878-3
Pu Y, Tan Y, Qu Y, et al. A role of the subdiaphragmatic vagus nerve in depression-like phenotypes in mice after fecal microbiota transplantation from Chrna7 knock-out mice with depression-like phenotypes. Brain Behav Immun. 2021;94:318-326. doi:10.1016/ J.BBI.2020.12.032
Marcondes Ávila PR, Fiorot M, Michels M, et al. Effects of microbiota transplantation and the role of the vagus nerve in gut–brain axis in animals subjected to chronic mild stress. J Affect Disord. 2020;277:410-416. doi:10.1016/J.JAD.2020.08.013
Aaronson ST, Sears P, Ruvuna F, et al. A 5-year observational study of patients with treatment resistant depression treated with vagus nerve stimulation or treatment as usual: Comparison of response, remission, and suicidality. American Journal of Psychiatry. 2017;174(7):640-648. doi:10.1176/APPI.AJP.2017.16010034/ASSET/IMAGES/LARGE/ APPI.AJP.2017.16010034F5.JPEG
Li T, Zheng LN, Han XH. Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomedicine & Pharmacotherapy. 2020;125:109680. doi:10.1016/J.BIOPHA.2019.109680
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol. 2022;10. doi:10.3389/FCELL.2022.880544
Jiang Y, Liu Y, Gao M, Xue M, Wang Z, Liang H. Nicotinamide riboside alleviates alcohol induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct. 2020;11(1):378-391. doi:10.1039/C9FO01780A
Li W, Ali T, He K, et al. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun. 2021;92:10-24. doi:10.1016/ J.BBI.2020.11.008
Zhang Y, Fan Q, Hou Y, et al. Bacteroides species differentially modulate depression-like behavior via gut-brain metabolic signaling. Brain Behav Immun. 2022;102:11-22. doi:10.1016/ J.BBI.2022.02.007
Gadzinowska J; ;, Tokarek J;, Forycka J;, et al. The Role of the Microbiome-Brain-Gut Axis in the Pathogenesis of Depressive Disorder. Nutrients 2022, Vol 14, Page 1921. 2022;14(9):1921. doi:10.3390/NU14091921
Ait Chait Y, Mottawea W, Tompkins TA, Hammami R. Unravelling the antimicrobial action of antidepressants on gut commensal microbes. Sci Rep. 2020;10(1). doi:10.1038/ S41598-020-74934-9
Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1). doi:10.1038/ s41467-019-14177-z
Klünemann M, Andrejev S, Blasche S, et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 2021 597:7877. 2021;597(7877):533-538. doi:10.1038/ s41586-021-03891-8
Jiang R, Wang Y, Liu J, et al. Gut microbiota is involved in the antidepressant effects of adipose-derived mesenchymal stem cells in chronic social defeat stress mouse model. Psychopharmacology (Berl). 2022;239(2):533-549. doi:10.1007/S00213-021-06037-W/ METRICS
Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510-1519. doi:10.1136/GUTJNL-2019-320204
Fontana A, Manchia M, Panebianco C, et al. Exploring the role of gut microbiota in major depressive disorder and in treatment resistance to antidepressants. Biomedicines. 2020;8(9). doi:10.3390/biomedicines8090311
Wilkowska A, Szałach ŁP, Cubała WJ. Gut Microbiota in Depression: A Focus on Ketamine. Front Behav Neurosci. 2021;15. doi:10.3389/fnbeh.2021.693362
Yang C, Qu Y, Fujita Y, et al. Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Transl Psychiatry. 2017;7(12). doi:10.1038/s41398-017-0031-4
Huang N, Hua D, Zhan G, et al. Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Pharmacol Biochem Behav. 2019;176:93-100. doi:10.1016/J.PBB.2018.12.001
Johnson D, Thurairajasingam S, Letchumanan V, Chan KG, Lee LH. Exploring the role and potential of probiotics in the field of mental health: Major depressive disorder. Nutrients. 2021;13(5). doi:10.3390/nu13051728
Yin W, Löf M, Chen R, Hultman CM, Fang F, Sandin S. Mediterranean diet and depression: a population-based cohort study. International Journal of Behavioral Nutrition and Physical Activity. 2021;18(1). doi:10.1186/s12966-021-01227-3
Bayes J, Schloss J, Sibbritt D. The effect of a Mediterranean diet on the symptoms of depression in young males (the “AMMEND: A Mediterranean Diet in MEN with Depression” study): a randomized controlled trial. Am J Clin Nutr. 2022;116(2):572-580. doi:10.1093/ AJCN/NQAC106
Seethaler B, Nguyen NK, Basrai M, et al. Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: data from the randomized controlled LIBRE trial. Am J Clin Nutr. 2022;116(4):928-942. doi:10.1093/AJCN/ NQAC175
Rao J, Xie R, Lin L, et al. Fecal microbiota transplantation ameliorates gut microbiota imbalance and intestinal barrier damage in rats with stress-induced depressive-like behavior. European Journal of Neuroscience. 2021;53(11):3598-3611. doi:10.1111/EJN.15192
Kurokawa S, Kishimoto T, Mizuno S, et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. J Affect Disord. 2018;235:506-512. doi:10.1016/J.JAD.2018.04.038
Doll JPK, Vázquez-Castellanos JF, Schaub AC, et al. Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression—Case Report. Front Psychiatry. 2022;13:815422. doi:10.3389/FPSYT.2022.815422/FULL
Dailey FE, Turse EP, Daglilar E, Tahan V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol. 2019;49:29-33. doi:10.1016/J.COPH.2019.04.008
Servick K. Alternatives to fecal transplants near approval. Science (1979). 2022;375(6579):368-369. doi:10.1126/science.ada0539
Chapman CMC, Gibson GR, Rowland I. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe. 2012;18(4):405-413. doi:10.1016/J.ANAEROBE.2012.05.004
Miyaoka T, Kanayama M, Wake R, et al. Clostridium butyricum MIYAIRI 588 as Adjunctive Therapy for Treatment-Resistant Major Depressive Disorder: A Prospective Open-Label Trial. Clin Neuropharmacol. 2018;41(5):151-155. doi:10.1097/WNF.0000000000000299
Tian T, Xu B, Qin Y, et al. Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochem Biophys Res Commun. 2019;516(2):430-436. doi:10.1016/ J.BBRC.2019.06.053
Ding Y, Bu F, Chen T, et al. A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress–induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Appl Microbiol Biotechnol. 2021;105(21-22):8411-8426. doi:10.1007/ S00253-021-11622-2/METRICS
Chang L, Wei Y, Hashimoto K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull. 2022;182:44-56. doi:10.1016/j.brainresbull.2022.02.004
Burokas A, Arboleya S, Moloney RD, et al. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol Psychiatry. 2017;82(7):472-487. doi:10.1016/j.biopsych.2016.12.031
Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clinical Nutrition. 2019;38(2):522-528. doi:10.1016/ j.clnu.2018.04.010
Tarutani S, Omori M, Ido Y, Yano M, Komatsu T, Okamura T. Effects of 4G-beta-D Galactosylsucrose in patients with depression: A randomized, double-blinded, placebo controlled, parallel-group comparative study. J Psychiatr Res. 2022;148:110-120. doi:10.1016/ J.JPSYCHIRES.2022.01.059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamila Kosyra, Marta Drabczyk, Zuzanna Marczyńska, Antoni Zyśk; Inga Magda
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 373
Number of citations: 0