Exploring Future Horizons in Osteoarthritis Relief: Unveiling the Potential of Slow-Acting Drugs and Innovative Medications
DOI:
https://doi.org/10.12775/JEHS.2024.58.008Keywords
Senotherapeutics, Osteoarthritis, Anti-Inflammatory Agents, Non-Steroidal, Glucosamine, Chondroitin Sulfates, Matrix Metalloproteinase InhibitorsAbstract
Introduction:
The existing treatment options for osteoarthritis (OA) fall short of addressing the significant challenges this disease imposes on patients in today's society. It markedly diminishes the quality of life of those affected and is one of the leading causes of disability. While conventional pharmacological interventions such as non-steroidal anti-inflammatory drugs (NSAIDs) and opioids effectively address pain, they are not intended to halt disease progression and are associated with potential health risks. Symptomatic Slow-Acting Drugs for Osteoarthritis (SYSADOA) and innovative medications, rooted in our expanding understanding of OA pathogenesis, offer promising prospects for discovering improved treatment modalities.
State of knowledge:
The evolving understanding of OA's etiology highlights the necessity for tailored treatments that consider distinct disease phenotypes. This review critically examines SYSADOA, specifically focusing on chondroitin sulfate, glucosamine, and avocado-soybean unsaponifiables, as agents designed to address the underlying pathology of OA. Chondroitin sulfate demonstrates potential disease-modifying effects, however with conflicting study results that underscore the extent of its efficacy. Glucosamine exhibits varying disease-modifying effects, with short-term trials demonstrating more promising outcomes in pain reduction. Avocado-soybean unsaponifiables show promise in alleviating knee OA pain, yet their impact on hip OA symptoms remains inconclusive. The review extends its scope to novel drugs with potential disease-modifying effects, exploring proteinase inhibitors, fibroblast growth factors, Wnt-signaling pathway inhibitors, senolytic agents, anti-nerve growth factor agents, and transforming growth factor-β.
Conclusions:
Although preliminary studies indicate potential for certain novel agents, challenges and adverse effects necessitate further investigation through rigorous, high-quality research.
References
Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 2020;396:1711–2. https://doi.org/10.1016/S0140-6736(20)32230-3.
Luong M-LN, Cleveland RJ, Nyrop KA, Callahan LF. Social determinants and osteoarthritis outcomes. Aging Health 2012;8:413–37. https://doi.org/10.2217/ahe.12.43.
Brooks PM. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol 2002;14:573–7. https://doi.org/10.1097/00002281-200209000-00017.
Yan H, Guo J, Zhou W, Dong C, Liu J. Health-related quality of life in osteoarthritis patients: a systematic review and meta-analysis. Psychol Health Med 2022;27:1859–74. https://doi.org/10.1080/13548506.2021.1971725.
Alami S, Boutron I, Desjeux D, Hirschhorn M, Meric G, Rannou F, et al. Patients’ and practitioners’ views of knee osteoarthritis and its management: a qualitative interview study. PLoS ONE 2011;6:e19634. https://doi.org/10.1371/journal.pone.0019634.
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017;5:16044. https://doi.org/10.1038/boneres.2016.44.
Woodell-May JE, Sommerfeld SD. Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res 2020;38:253–7. https://doi.org/10.1002/jor.24457.
Oo WM, Hunter DJ. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther Adv Musculoskelet Dis 2022;14:1759720X221090297. https://doi.org/10.1177/1759720X221090297.
Karsdal MA, Michaelis M, Ladel C, Siebuhr AS, Bihlet AR, Andersen JR, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthr Cartil 2016;24:2013–21. https://doi.org/10.1016/j.joca.2016.07.017.
McCarberg B, Tenzer P. Complexities in the pharmacologic management of osteoarthritis pain. Curr Med Res Opin 2013;29:539–48. https://doi.org/10.1185/03007995.2013.785391.
Graham DJ, Campen D, Hui R, Spence M, Cheetham C, Levy G, et al. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 2005;365:475–81. https://doi.org/10.1016/S0140-6736(05)17864-7.
de Boer TN van RJ Bijlsma JW, Lafeber FP, Mastbergen SC Zweers MC. Celecoxib considerations regarding its potential. Arthritis Res Ther 2011;13(5):239.
Nakata K, Hanai T, Take Y, Osada T, Tsuchiya T, Shima D, et al. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthr Cartil 2018;26:1263–73. https://doi.org/10.1016/j.joca.2018.05.021.
Perry TA, Wang X, Nevitt M, Abdelshaheed C, Arden N, Hunter DJ. Association between current medication use and progression of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Rheumatology (Oxford) 2021;60:4624–32. https://doi.org/10.1093/rheumatology/keab059.
Reijman M, Bierma-Zeinstra SMA, Pols HAP, Koes BW, Stricker BHC, Hazes JMW. Is there an association between the use of different types of nonsteroidal antiinflammatory drugs and radiologic progression of osteoarthritis? The Rotterdam Study. Arthritis Rheum 2005;52:3137–42. https://doi.org/10.1002/art.21357.
Burnett BP, Levy RM. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv Ther 2012;29:79–98. https://doi.org/10.1007/s12325-011-0100-7.
Anderson GD, Keys KL, De Ciechi PA, Masferrer JL. Combination therapies that inhibit cyclooxygenase-2 and leukotriene synthesis prevent disease in murine collagen induced arthritis. Inflamm Res 2009;58:109–17. https://doi.org/10.1007/s00011-009-8149-3.
Honvo G, Reginster J-Y, Rabenda V, Geerinck A, Mkinsi O, Charles A, et al. Safety of Symptomatic Slow-Acting Drugs for Osteoarthritis: Outcomes of a Systematic Review and Meta-Analysis. Drugs Aging 2019;36:65–99. https://doi.org/10.1007/s40266-019-00662-z.
Kwaśniewska A, Chudala M, Romanowski W. Recommendations for the use of imaging and management of osteoarthritis in the light of current guidelines. Rheumatology Forum 2022;8:1–5. https://doi.org/10.5603/RF.2022.0001.
Fernández-Martín S, González-Cantalapiedra A, Muñoz F, García-González M, Permuy M, López-Peña M. Glucosamine and Chondroitin Sulfate: Is There Any Scientific Evidence for Their Effectiveness as Disease-Modifying Drugs in Knee Osteoarthritis Preclinical Studies?-A Systematic Review from 2000 to 2021. Animals (Basel) 2021;11. https://doi.org/10.3390/ani11061608.
Kahan A, Uebelhart D, De Vathaire F, Delmas PD, Reginster J-Y. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2009;60:524–33. https://doi.org/10.1002/art.24255.
Michel BA, Stucki G, Frey D, De Vathaire F, Vignon E, Bruehlmann P, et al. Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial. Arthritis Rheum 2005;52:779–86. https://doi.org/10.1002/art.20867.
Reginster J-Y, Veronese N. Highly purified chondroitin sulfate: a literature review on clinical efficacy and pharmacoeconomic aspects in osteoarthritis treatment. Aging Clin Exp Res 2021;33:37–47. https://doi.org/10.1007/s40520-020-01643-8.
Wen ZH, Tang CC, Chang YC, Huang SY, Hsieh SP, Lee CH, et al. Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes. Osteoarthr Cartil 2010;18:1192–202. https://doi.org/10.1016/j.joca.2010.05.012.
Bruyere O, Pavelka K, Rovati LC, Gatterová J, Giacovelli G, Olejarová M, et al. Total joint replacement after glucosamine sulphate treatment in knee osteoarthritis: results of a mean 8-year observation of patients from two previous 3-year, randomised, placebo-controlled trials. Osteoarthr Cartil 2008;16:254–60. https://doi.org/10.1016/j.joca.2007.06.011.
Vo NX, Le NNH, Chu TDP, Pham HL, Dinh KXA, Che UTT, et al. Effectiveness and safety of glucosamine in osteoarthritis: A systematic review. Pharmacy (Basel) 2023;11. https://doi.org/10.3390/pharmacy11040117.
Martel-Pelletier J, Roubille C, Abram F, Hochberg MC, Dorais M, Delorme P, et al. First-line analysis of the effects of treatment on progression of structural changes in knee osteoarthritis over 24 months: data from the osteoarthritis initiative progression cohort. Ann Rheum Dis 2015;74:547–56. https://doi.org/10.1136/annrheumdis-2013-203906.
Yang W, Sun C, He SQ, Chen JY, Wang Y, Zhuo Q. The Efficacy and Safety of Disease-Modifying Osteoarthritis Drugs for Knee and Hip Osteoarthritis-a Systematic Review and Network Meta-Analysis. J Gen Intern Med 2021;36:2085–93. https://doi.org/10.1007/s11606-021-06755-z.
Simental-Mendía M, Sánchez-García A, Acosta-Olivo CA, Vilchez-Cavazos F, Osuna-Garate J, Peña-Martínez VM, et al. Efficacy and safety of avocado-soybean unsaponifiables for the treatment of hip and knee osteoarthritis: A systematic review and meta-analysis of randomized placebo-controlled trials. Int J Rheum Dis 2019;22:1607–15. https://doi.org/10.1111/1756-185X.13658.
Li S, Cao P, Chen T, Ding C. Latest insights in disease-modifying osteoarthritis drugs development. Ther Adv Musculoskelet Dis 2023;15:1759720X231169839. https://doi.org/10.1177/1759720X231169839.
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 2012;1824:133–45. https://doi.org/10.1016/j.bbapap.2011.06.020.
Krzeski P, Buckland-Wright C, Bálint G, Cline GA, Stoner K, Lyon R, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 2007;9:R109. https://doi.org/10.1186/ar2315.
van der Aar E, Deckx H, Dupont S, Fieuw A, Delage S, Larsson S, et al. Safety, Pharmacokinetics, and Pharmacodynamics of the ADAMTS-5 Inhibitor GLPG1972/S201086 in Healthy Volunteers and Participants With Osteoarthritis of the Knee or Hip. Clin Pharmacol Drug Dev 2022;11:112–22. https://doi.org/10.1002/cpdd.1042.
Schnitzer T, Pueyo M, Deckx H, van der Aar E, Bernard K, Hatch S, et al. Evaluation of S201086/GLPG1972, an ADAMTS-5 inhibitor, for the treatment of knee osteoarthritis in ROCCELLA: a phase 2 randomized clinical trial. Osteoarthr Cartil 2023;31:985–94. https://doi.org/10.1016/j.joca.2023.04.001.
Dahlberg LE, Aydemir A, Muurahainen N, Gühring H, Edebo HF, Krarup-Jensen N, et al. A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular rhFGF18 (sprifermin) in patients with advanced knee osteoarthritis First-in-human study of sprifermin in knee OA / L.E. Dahlberg et al 2016;34:443–50.
Guehring H, Moreau F, Daelken B, Ladel C, Guenther O, Bihlet AR, et al. The effects of sprifermin on symptoms and structure in a subgroup at risk of progression in the FORWARD knee osteoarthritis trial. Semin Arthritis Rheum 2021;51:450–6. https://doi.org/10.1016/j.semarthrit.2021.03.005.
Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol 2013;9:328–39. https://doi.org/10.1038/nrrheum.2013.25.
Yazici Y, McAlindon TE, Fleischmann R, Gibofsky A, Lane NE, Kivitz AJ, et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthr Cartil 2017;25:1598–606. https://doi.org/10.1016/j.joca.2017.07.006.
Yazici Y, McAlindon TE, Gibofsky A, Lane NE, Clauw D, Jones M, et al. Lorecivivint, a Novel Intraarticular CDC-like Kinase 2 and Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A Inhibitor and Wnt Pathway Modulator for the Treatment of Knee Osteoarthritis: A Phase II Randomized Trial. Arthritis Rheumatol 2020;72:1694–706. https://doi.org/10.1002/art.41315.
Yazici Y, Swearingen C, Ghandehari H, Simsek I, Kennedy S, Tambiah J, et al. Pos1365 structural severity in knee osteoarthritis impacts treatment response: a post hoc pooled analysis of lorecivivint clinical trials. Scientific Abstracts, BMJ Publishing Group Ltd and European League Against Rheumatism; 2023, p. 1035.1-1035. https://doi.org/10.1136/annrheumdis-2023-eular.2791.
Yazici Y, Swearingen C, Lopez V, Britt J, Kennedy S, Tambiah J, et al. Op0074 radiographic and pain outcomes from a phase 3 extension study evaluating the safety and efficacy of lorecivivint in subjects with severe osteoarthritis of the knee (oa-07): single blind and crossover results. Scientific Abstracts, BMJ Publishing Group Ltd and European League Against Rheumatism; 2023, p. 50.2-51. https://doi.org/10.1136/annrheumdis-2023-eular.2833.
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 2021;17:47–57. https://doi.org/10.1038/s41584-020-00533-7.
Hsu B, Visich J, Lane NE, Li L, Mittal J, An M, et al. Safety, tolerability, pharmacokinetics, and clinical outcomes following treatment of painful knee osteoarthritis with senolytic molecule UBX0101. Osteoarthr Cartil 2020;28:S479–80. https://doi.org/10.1016/j.joca.2020.02.752.
Lane N, Hsu B, Visich J, Xie B, Khan A, Dananberg J. A phase 2, randomized, double-blind, placebo-controlled study of senolytic molecule UBX0101 in the treatment of painful knee osteoarthritis. Osteoarthr Cartil 2021;29:S52–3. https://doi.org/10.1016/j.joca.2021.02.077.
Yang H, Chen C, Chen H, Duan X, Li J, Zhou Y, et al. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany NY) 2020;12:12750–70. https://doi.org/10.18632/aging.103177.
Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol 2020;16:673–88. https://doi.org/10.1038/s41584-020-00518-6.
Miller RE, Block JA, Malfait A-M. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models? Curr Opin Rheumatol 2017;29:110–8. https://doi.org/10.1097/BOR.0000000000000354.
Schnitzer TJ, Easton R, Pang S, Levinson DJ, Pixton G, Viktrup L, et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: A randomized clinical trial. JAMA 2019;322:37–48. https://doi.org/10.1001/jama.2019.8044.
van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol 2017;13:155–63. https://doi.org/10.1038/nrrheum.2016.219.
Ha C-W, Noh MJ, Choi KB, Lee KH. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 2012;14:247–56. https://doi.org/10.3109/14653249.2011.629645.
Cho J, Kim T, Park Y, Shin J, Kang S, Lee B. InvossaTM(Tissuegene-C) in patients with osteoarthritis: A phase III trial. Osteoarthr Cartil 2016;24:S190. https://doi.org/10.1016/j.joca.2016.01.374.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Katarzyna Sokołowska, Dawid Bereza, Maria Kulak, Igor Moreau, Paulina Polańska, Miriam Lang, Barbara Woch
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 312
Number of citations: 0