Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

AI in Dermatology: Bridging the Gap Between Potential and Practice
  • Home
  • /
  • AI in Dermatology: Bridging the Gap Between Potential and Practice
  1. Home /
  2. Archives /
  3. Vol. 52 (2024) /
  4. Review Articles

AI in Dermatology: Bridging the Gap Between Potential and Practice

Authors

  • Jakub Klarycki District Hospital in Stalowa Wola; Poland, 37-450 Stalowa Wola Staszica 4 https://orcid.org/0009-0001-4168-0001
  • Karolina Tomczyk District Hospital in Stalowa Wola Staszica 4, Stalowa Wola 37-450 https://orcid.org/0009-0008-6295-1166
  • Dominika Podgórska St. Jadwiga Queen Clinical Regional Hospital No. 2 in Rzeszow Lwowska 60, Rzeszów 35-301 https://orcid.org/0009-0005-0023-9630
  • Miłosz Sanecki St. Jadwiga Queen Clinical Regional Hospital No. 2 in Rzeszow Lwowska 60, Rzeszów 35-301 https://orcid.org/0009-0009-2453-8482
  • Karolina Jurasz Ludwik Rydygier Memorial Hospital in Cracow Osiedle Złotej Jesieni 1, 31-826 Kraków https://orcid.org/0009-0004-4818-3261
  • Natalia Chojnacka Dr. Karol Jonscher Hospital in Lodz ul. Milionowa 14, 93-113 Łódź https://orcid.org/0009-0000-6454-5032
  • Ewa Rzeska District Hospital in Pultusk Gajda-Med Sp. z o.o. Ul. Teofila Kwiatkowskiego 19, 06-102 Pułtusk https://orcid.org/0009-0000-4141-2819
  • Radosław Cymer Lower-Silesian Center of Oncology, Pulmonary and Hematology in Wroclaw pl. L. Hirszfelda 12, 53-413 Wrocław https://orcid.org/0009-0007-7165-2806

DOI:

https://doi.org/10.12775/JEHS.2024.52.004

Keywords

artificial intelligence, dermatology, melanoma, skin, cancer

Abstract

Artificial intelligence has been rapidly penetrating every element of our lives for quite some time. However, its presence in health care has remained elusive. This is particularly apparent in the field of dermatology, where, given the characteristics of this discipline of medicine, it would seems that its presence should be abundant. Malignant skin lesions are still high in the statistics in terms of cancer mortality while being one of the easiest to treat when diagnosed early. There are many reasons why artificial intelligence is not used in daily practice as an aid for cancers detection. However the most important one is the ongoing insufficient quality of the algorithms, which, despite great results in laboratory settings, do not produce good enough outcomes in clinical settings. Other important reasons are that people still distrust and fear artificial intelligence and simply the legal lack of adaptation of countries to its lawful and safe use. Despite the work of scientists and legislators the road to seeing artificial intelligence as a helping tool for dermatologists on a daily basis is still very long and requires the attention of scientists and the whole medical community.

References

Ertel W. Introduction to Artificial Intelligence. Springer; 2018. Accessed January 2, 2024. https://books.google.pl/books?hl=en&lr=&id=geFHDwAAQBAJ&oi=fnd&pg=PR5&dq=Artificial+intelligence&ots=3Fby7bgD3t&sig=8Z3EHLveMPaGzqmpDVvd-TwYndw&redir_esc=y#v=onepage&q=Artificial%20intelligence&f=false

Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review. 2020;53. doi:https://doi.org/10.1007/s10462-020-09825-6

Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69(69):S36-S40. doi:https://doi.org/10.1016/j.metabol.2017.01.011

Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402. doi:https://doi.org/10.1001/jama.2016.17216

Brandt MG, Moore CC. Nonmelanoma Skin Cancer. Facial Plastic Surgery Clinics of North America. 2019;27(1):1-13. doi:https://doi.org/10.1016/j.fsc.2018.08.001

Dzwierzynski WW. Melanoma Risk Factors and Prevention. Clinics in Plastic Surgery. 2021;48(4):543-550. doi:https://doi.org/10.1016/j.cps.2021.05.001

Poland S, in Kraków SO. Health and health care in 2021. Warszawa, Kraków 2022. https://stat.gov.pl/obszary-tematyczne/zdrowie/zdrowie/zdrowie-i-ochrona-zdrowia-w-2021-roku,1,12.html

Cantisani C, Ambrosio L, Cucchi C, et al. Melanoma Detection by Non-Specialists: An Untapped Potential for Triage? Diagnostics. 2022;12(11):2821.

doi:https://doi.org/10.3390/diagnostics12112821

Han SS, Kim YJ, Moon IJ, et al. Evaluation of Artificial Intelligence–Assisted Diagnosis of Skin Neoplasms: A Single-Center, Paralleled, Unmasked, Randomized Controlled Trial. Journal of Investigative Dermatology. 2022;142(9):2353-2362.e2. doi:https://doi.org/10.1016/j.jid.2022.02.003

Fujisawa Y, Otomo Y, Ogata Y, et al. Deep‐learning‐based, computer‐aided classifier developed with a small dataset of clinical images surpasses board‐certified dermatologists in skin tumour diagnosis. British Journal of Dermatology. 2018;180(2):373-381. doi:https://doi.org/10.1111/bjd.16924

Phillips M, Greenhalgh J, Marsden H, Palamaras I. Detection of Malignant Melanoma Using Artificial Intelligence: An Observational Study of Diagnostic Accuracy. Dermatology Practical & Conceptual. Published online December 31, 2019:e2020011. doi:https://doi.org/10.5826/dpc.1001a11

Menzies SW, Sinz C, Menzies M, et al. Comparison of humans versus mobile phone-powered artificial intelligence for the diagnosis and management of pigmented skin cancer in secondary care: a multicentre, prospective, diagnostic, clinical trial. The Lancet Digital Health. 2023;5(10):e679-e691. doi:https://doi.org/10.1016/S2589-7500(23)00130-9

Phillips M, Marsden H, Jaffe W, et al. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. JAMA Network Open. 2019;2(10):e1913436. doi:https://doi.org/10.1001/jamanetworkopen.2019.13436

Muñoz‐López C, Ramírez‐Cornejo C, Marchetti MA, et al. Performance of a deep neural network in teledermatology: a single‐centre prospective diagnostic study. Journal of the European Academy of Dermatology and Venereology. 2020;35(2):546-553. doi:https://doi.org/10.1111/jdv.16979

Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P. Accuracy of Computer-Aided Diagnosis of Melanoma. JAMA Dermatology. Published online June 19, 2019. doi:https://doi.org/10.1001/jamadermatol.2019.1375

Rajpara SM, Botello AP, Townend J, Ormerod AD. Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma. British Journal of Dermatology. 2009;161(3):591-604. doi:https://doi.org/10.1111/j.1365-2133.2009.09093.x

Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digital Medicine. 2020;3(1):1-8. doi:https://doi.org/10.1038/s41746-020-00324-0

Premarket Approval (PMA). www.accessdata.fda.gov. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p090012

Premarket Approval (PMA). www.accessdata.fda.gov. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P150046

Rudin C, Radin J. Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Science Review. 2019;1(2). doi:https://doi.org/10.1162/99608f92.5a8a3a3d

Rodrigues R. Legal and Human Rights Issues of AI: Gaps, Challenges and Vulnerabilities. Journal of Responsible Technology. 2020;4(100005):100005. doi:https://doi.org/10.1016/j.jrt.2020.100005

Liu Y, Primiero CA, Kulkarni V, Soyer HP, Betz-Stablein B. Artificial intelligence for the classification of pigmented skin lesions in populations with skin of colour: A systematic review. Dermatology. Published online March 21, 2023. doi:https://doi.org/10.1159/000530225

Jan-Oliver Kutza, Hannemann N, Hübner U, Babitsch B. The Representation of Trust in Artificial Intelligence Healthcare Research. Studies in health technology and informatics. Published online June 29, 2023. doi:https://doi.org/10.3233/shti230409

Gillespie N, Lockey S, Curtis C. Trust in artificial Intelligence: a five country study. Published online March 25, 2021. doi:https://doi.org/10.14264/e34bfa3

EU AI Act: first regulation on artificial intelligence | News | European Parliament. www.europarl.europa.eu. Published August 6, 2023. Accessed January 2, 2024. https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence/

Tai MCT. The impact of artificial intelligence on human society and bioethics. Tzu Chi Medical Journal. 2020;32(4):339-343. doi:https://doi.org/10.4103/tcmj.tcmj_71_20

Navarrete-Dechent C, Dusza SW, Liopyris K, Marghoob AA, Halpern AC, Marchetti MA. Automated Dermatological Diagnosis: Hype or Reality? Journal of Investigative Dermatology. 2018;138(10):2277-2279. doi:https://doi.org/10.1016/j.jid.2018.04.040

Automated Classification of Skin Lesions: From Pixels to Practice. Journal of Investigative Dermatology. 2018;138(10):2108-2110. doi:https://doi.org/10.1016/j.jid.2018.06.175

Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial attacks on medical machine learning. Science. 2019;363(6433):1287-1289. doi:https://doi.org/10.1126/science.aaw4399

Navarrete-Dechent C, Liopyris K, Marchetti MA. Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. Journal of Investigative Dermatology. Published online October 2020. doi:https://doi.org/10.1016/j.jid.2020.06.040

Combalia M, Codella N, Rotemberg V, et al. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge. The Lancet Digital Health. 2022;4(5):e330-e339. doi:https://doi.org/10.1016/s2589-7500(22)00021-8

Gaudy-Marqueste C, Wazaefi Y, Bruneu Y, et al. Ugly Duckling Sign as a Major Factor of Efficiency in Melanoma Detection. JAMA Dermatology. 2017;153(4):279. doi:https://doi.org/10.1001/jamadermatol.2016.5500

Haggenmüller S, Maron RC, Hekler A, et al. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. European Journal of Cancer (Oxford, England: 1990). 2021;156:202-216. doi:https://doi.org/10.1016/j.ejca.2021.06.049

Podolec K, Brzewski P, Pirowska M, Wojas-Pelc A. Predictive value of global dermoscopic pattern in patients diagnosed with cutaneous melanoma. Advances in Dermatology and Allergology. 2021;38(4):572-577. doi:https://doi.org/10.5114/ada.2020.94593

Elder DE, Eguchi M, Barnhill RL, et al. Diagnostic error, uncertainty, and overdiagnosis in melanoma. Pathology. 2023;55(2):206-213. doi:https://doi.org/10.1016/j.pathol.2022.12.345

Kutzner H, Jutzi TB, Krahl D, et al. Overdiagnosis of melanoma – causes, consequences and solutions. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2020;18(11):1236-1243. doi:https://doi.org/10.1111/ddg.14233

Znaor A. Melanoma burden, healthcare utilization and the potential for overdiagnosis in the elderly U.S. population. British Journal of Dermatology. 2017;177(3):625-625. doi:https://doi.org/10.1111/bjd.15759

Gordon C, Phillips M, Beresin EV. 3 - The Doctor–Patient Relationship. In: Stern TA, Fricchione GL, Cassem NH, Jellinek MS, Rosenbaum JF, eds. Massachusetts General Hospital Handbook of General Hospital Psychiatry (Sixth Edition). Sixth Edition. W.B. Saunders; 2010:15-23. doi:10.1016/B978-1-4377-1927-7.00003-0

Nasr-Esfahani E, Samavi S, Karimi N, et al. Melanoma detection by analysis of clinical images using convolutional neural network. IEEE Xplore. doi:https://doi.org/10.1109/EMBC.2016.7590963

Yang S, Shu C, Hu H, Ma G, Yang M. Dermoscopic Image Classification of Pigmented Nevus under Deep Learning and the Correlation with Pathological Features. Computational and Mathematical Methods in Medicine. 2022;2022:9726181. doi:https://doi.org/10.1155/2022/9726181

Hekler A, Utikal JS, Enk AH, et al. Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer. 2019;120:114-121. doi:https://doi.org/10.1016/j.ejca.2019.07.019

Tschandl P, Rinner C, Apalla Z, et al. Human–computer collaboration for skin cancer recognition. Nature Medicine. 2020;26(8):1229-1234. doi:https://doi.org/10.1038/s41591-020-0942-0

Downloads

  • PDF

Published

2024-01-11

How to Cite

1.
KLARYCKI, Jakub, TOMCZYK, Karolina, PODGÓRSKA, Dominika, SANECKI, Miłosz, JURASZ, Karolina, CHOJNACKA, Natalia, RZESKA, Ewa and CYMER, Radosław. AI in Dermatology: Bridging the Gap Between Potential and Practice. Journal of Education, Health and Sport. Online. 11 January 2024. Vol. 52, pp. 57-73. [Accessed 28 June 2025]. DOI 10.12775/JEHS.2024.52.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 52 (2024)

Section

Review Articles

License

Copyright (c) 2024 Jakub Klarycki, Karolina Tomczyk, Dominika Podgórska, Miłosz Sanecki, Karolina Jurasz, Natalia Chojnacka, Ewa Rzeska, Radosław Cymer

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 404
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

artificial intelligence, dermatology, melanoma, skin, cancer
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop