Decelerating aging process with physical activity - a review
DOI:
https://doi.org/10.12775/JEHS.2023.19.01.017Keywords
aging pathophysiology, physical exercise in the aging process, aging process underlying conditions, molecular biology of aging, cell lifespan, cell longevityAbstract
Introduction: The process of aging is a progressive, patterned, and accumulative set of time-related changes resulting from a mix of genetic, epigenetic, and environmental factors, that are constantly evolving, and that lead the human body to be more prone to defects and susceptible to disease, and at last to death. On the molecular level, the accumulation of free radical reactions that constantly go on in every cell and tissue is thought to be the main culprit behind the process of aging [1]. These reactions amassed over time, hamper immune responses to external factors, cause homeostatic imbalance and lead to chronic pro-inflammatory status in body cells. This process has been dubbed “inflammaging” [2]. Physical activity, along with a balanced diet and a healthy lifestyle as a whole, has long been thought to be crucial in retaining health and good quality of life.
Aim of the study: A review of current knowledge about the process of aging, a summary of underlying pathologies, and current preventive protocols, with a focus on physical activity as a preventative measure in combating illness and age-related pathologies.
Methods and materials: A review of chosen literature in the PubMed database, MDPI database, and GoogleScholar was conducted using the following keywords: “aging pathophysiology”, “physical exercise in the aging process”, “aging process underlying conditions”, “molecular biology of aging”, “cell lifespan”, “cell longevity”.
Results and conclusions: Physical activity helps decelerate the process of aging, both physical and cognitive, through various pathways in the human body.
References
Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124-8. doi: 10.1073/pnas.78.11.7124. PMID: 6947277; PMCID: PMC349208.
Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, Morishita R. Source of Chronic Inflammation in Aging. Front Cardiovasc Med. 2018 Feb 22;5:12. doi: 10.3389/fcvm.2018.00012. PMID: 29564335; PMCID: PMC5850851.
Kim S. Molecular biology of aging. Arch Surg. 2003 Oct;138(10):1051-4. doi: 10.1001/archsurg.138.10.1051. PMID: 14557119.
Knapowski J, Wieczorowska-Tobis K, Witowski J. Pathophysiology of ageing. J Physiol Pharmacol. 2002 Jun;53(2):135-46. PMID: 12120891.
Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994 Feb 25;263(5150):1128-30. doi: 10.1126/science.8108730. PMID: 8108730.
Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998 Jun;19(2):171-4. doi: 10.1038/534. PMID: 9620775.
Reaume AGElliott JLHoffman EK et al. Motor neurons in Cu/Zn superoxide dismutase–deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996;1343- 47
Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet. 1998 Feb;18(2):159-63. doi: 10.1038/ng0298-159. PMID: 9462746.
Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905-9. doi: 10.1073/pnas.90.19.8905. PMID: 8415630; PMCID: PMC47469.
Vanfleteren JR, De Vreese A. Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans. J Exp Zool. 1996 Feb 1;274(2):93-100. doi: 10.1002/(SICI)1097-010X(19960201)274:2<93::AID-JEZ2>3.0.CO;2-8. PMID: 8742689.
Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003 Feb 28;299(5611):1346-51. doi: 10.1126/science.1081447. PMID: 12610294.
Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997 Aug 15;277(5328):942-6. doi: 10.1126/science.277.5328.942. PMID: 9252323.
Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996 Aug 8;382(6591):536-9. doi: 10.1038/382536a0. PMID: 8700226.
Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003 Jan 9;421(6919):182-7. doi: 10.1038/nature01298. Epub 2002 Dec 4. PMID: 12483226.
Dollé ME, Giese H, Hopkins CL, Martus HJ, Hausdorff JM, Vijg J. Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet. 1997 Dec;17(4):431-4. doi: 10.1038/ng1297-431. PMID: 9398844.
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May 31;345(6274):458-60. doi: 10.1038/345458a0. PMID: 2342578.
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998 Jan 16;279(5349):349-52. doi: 10.1126/science.279.5349.349. PMID: 9454332.
Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997 Oct 3;91(1):25-34. doi: 10.1016/s0092-8674(01)80006-4. PMID: 9335332.
de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH. Premature aging in mice deficient in DNA repair and transcription. Science. 2002 May 17;296(5571):1276-9. doi: 10.1126/science.1070174. Epub 2002 Apr 11. PMID: 11950998.
Faienza, M.F.; Lassandro, G.; Chiarito, M.; Valente, F.; Ciaccia, L.; Giordano, P. How Physical Activity across the Lifespan Can Reduce the Impact of Bone Ageing: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 1862. https://doi.org/10.3390/ijerph17061862
Duan P, Bonewald LF. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol. 2016 Aug;77(Pt A):23-29. doi: 10.1016/j.biocel.2016.05.015. Epub 2016 May 19. PMID: 27210503; PMCID: PMC4958569.
Zitzmann AL, Shojaa M, Kast S, Kohl M, von Stengel S, Borucki D, Gosch M, Jakob F, Kerschan-Schindl K, Kladny B, Lange U, Middeldorf S, Peters S, Schoene D, Sieber C, Thomasius F, Uder M, Kemmler W. The effect of different training frequency on bone mineral density in older adults. A comparative systematic review and meta-analysis. Bone. 2022 Jan;154:116230. doi: 10.1016/j.bone.2021.116230. Epub 2021 Oct 5. PMID: 34624560
. Barrès R, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15:405–411. doi: 10.1016/j.cmet.2012.01.001.
Fyfe JJ, Bishop DJ, Zacharewicz E, Russell AP, Stepto NK. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016 Jun 1;310(11):R1297-311. doi: 10.1152/ajpregu.00479.2015. Epub 2016 Apr 13. PMID: 27101297
Murach KA, Dimet-Wiley AL, Wen Y, Brightwell CR, Latham CM, Dungan CM, Fry CS, Watowich SJ. Late-life exercise mitigates skeletal muscle epigenetic aging. Aging Cell. 2022 Jan;21(1):e13527. doi: 10.1111/acel.13527. Epub 2021 Dec 21. PMID: 34932867; PMCID: PMC8761012.
Valdez G, et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc. Natl Acad. Sci. USA. 2010;107:14863–14868. doi: 10.1073/pnas.1002220107.
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022 Nov 7;7(1):374. doi: 10.1038/s41392-022-01211-8. PMID: 36336680; PMCID: PMC9637765.
Antonucci S, Mulvey JF, Burger N, Di Sante M, Hall AR, Hinchy EC, Caldwell ST, Gruszczyk A V., Deshwal S, Hartley RC, Kaludercic N, Murphy MP, Di Lisa F, Krieg T: Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radic Biol Med 2019;134:678-687.
https://doi.org/10.1016/j.freeradbiomed.2019.01.034
Lesmana R, Parameswari C, Mandagi GF, Wahyudi JF, Permana NJ, Radhiyanti PT, Gunadi JW. The Role of Exercise-Induced Reactive Oxygen Species (ROS) Hormesis in Aging: Friend or Foe. Cell Physiol Biochem. 2022 Dec 12;56(6):692-706. doi: 10.33594/000000594. PMID: 36511580.
Belviranlı, Muaz, and Hakkı Gökbel. "ACUTE EXERCISE INDUCED OXIDATIVE STRESS AND ANTIOXIDANT CHANGES". European Journal of General Medicine 2006 3 no. 3 (2006): 126-131. https://doi.org/10.29333/ejgm/82392
Corbi G, Conti V, Russomanno G, Rengo G, Vitulli P, Ciccarelli AL, Filippelli A, Ferrara N. Is physical activity able to modify oxidative damage in cardiovascular aging? Oxid Med Cell Longev. 2012;2012:728547. doi: 10.1155/2012/728547. Epub 2012 Sep 16. PMID: 23029599; PMCID: PMC3458405.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ewa Uram, Magdalena Osuch, Rafał Bogacz, Magdalena Gaik, Inga Magda, Dawid Gazda
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 239
Number of citations: 0