SGLT2 inhibitors - a breakthrough in treatment of heart failure and their multipotential beneficial role in cardiology, diabetology, nephrology and neurology
DOI:
https://doi.org/10.12775/JEHS.2023.38.01.013Keywords
SGLT-2 inhibitors, flozins, flozins heart failure, heart failure with reduced left ventricular ejection fraction (HFrEF), dapagliflozin, cardiovascular, empagliflozin, systolic, diabetesAbstract
Inhibitors of the sodium-glucose cotransporter 2 (SGLT2 inhibitors) are relatively new and
innovative antihyperglycemic drugs which by inhibiting sodium-glucose cotransporter 2 minimalise
reabsorption of glucose in nephrones. Due to this process, SGLT2 inhibitors became a first-choice
drugs in diabetology. Flozins were a turning point in many clinical trials and currently consequently
conquer pharmacoterapy in cardiology. In the past years, clinical studies proved vast role of SGLT2
inhibitors in other fields of medicine. Flosins protect heart muscle and kidneys among patients with or
without type diabetes mellitus type 2. They have positive effect on hypertension, arteries and brain
tissue.
Cardiological condition with the lowest long-term outcome in patients is heart failure with reduced
ejection fraction. Until flozins, treatment in heart failure with reduced ejection fraction was based on
four groups of drugs: β-blocker, inhibitors of the renin-angiotensin aldosterone system (RAA),
including angiotensin converting enzyme ACE/ARB inhibitors, angiotensin and neprilysin receptor
blockers (ARNI) and mineralocorticoid receptor antagonists (MRA). It was an appropriate HFrEF
treatment over the last years. However thanks to large-scale researches a role of flozins in cardiology
have been established and they became hope for a change in the course of heart failure.
The following article presents aspects of using flozins in treatment of patients with HFrEF,
multipotential usage, vast benefits for patients, not solely cardiologic, and side effects of these
miraculous group of drugs.
References
Rieg T, Vallon V: Development of SGLT1 and SGLT2 inhibitors . Diabetologia. 2018,
:2079-86.
Cho YK, Kang YM, Lee SE, et al.: Efficacy and safety of combination therapy with SGLT2
and DPP4 inhibitors in the treatment of type 2 diabetes: a systematic review and meta-
analysis. Diabetes Metab. 2018, 44:393-401.
Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T: Inflammation and oxidative
stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor
agonists. Int J Mol Sci. 2021, 22:10822.
Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radović N, Jadrijević S,
Aleksic I, Walles T, Sauvant C, Sabolić I, Koepsell H: Localizations of Na(+)-D-glucose
cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine,
liver, lung, and heart. Pflugers Arch 467: 1881–1898, 2015. 10.1007/s00424-014-1619-7
Chasis H, Jolliffe N, Smith HW: The action of phlorizin on the excretion of glucose, xylose,
sucrose, creatinine and urea by man. J Clin Invest 12: 1083–1090, 1933. 10.1172/JCI100559
Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A,
Tsujihara K, Anai M, Asano T, Kanai Y, Endou H: T-1095, an inhibitor of renal Na+-glucose
cotransporters, may provide a novel approach to treating diabetes. Diabetes 48: 1794–1800,
10.2337/diabetes.48.9.1794
Silverman M: The in vivo localization of high-affinity phlorizin receptors to the brush border
surface of the proximal tubule in dog kidney. Biochim Biophys Acta 339: 92–102, 1974.
1016/0005-2736(74)90335-6
Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA: Cloning of a human kidney
cDNA with similarity to the sodium-glucose cotransporter. Am J Physiol 263: F459–F465,
10.1152/ajprenal.1992.263.3.F459
Rossetti, Luciano; Smith, Douglas; Shulman, Gerald I.; Papachristou, Dimitrios; DeFronzo,
Ralph A. (1987). "Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to
insulin in diabetic rats". The Journal of Clinical Investigation. 79 (5): 1510–1515.
Tatoń, Jan; Piątkiewicz, Paweł; Czech, Anna (2010). "Molecular physiology of cellular
glucose transport – A potential area for clinical studies in diabetes mellitus". Endokrynologia
Polska. 61 (3): 303–310.
Chao, Edward C.; Henry, Robert R. (2010). "SGLT2 inhibition – A novel strategy for
diabetes treatment". Nature Reviews Drug Discovery. 9 (7): 551–559.
Wright EM: Glucose transport families SLC5 and SLC50. Mol Aspects Med 34: 183–196,
10.1016/j.mam.2012.11.002
Hirayama BA, Díez-Sampedro A, Wright EM: Common mechanisms of inhibition for the
Na+/glucose (hSGLT1) and Na+/Cl-/GABA (hGAT1) cotransporters. Br J Pharmacol 134:
–495, 2001. 10.1038/sj.bjp.0704274
Anderson, Sarah L.; Marrs, Joel C. (2012). "Dapagliflozin for the Treatment of Type 2
Diabetes". Annals of Pharmacotherapy. 46 (4): 590–598.
Filippatos G, Butler J, Farmakis D, Zannad F, Ofstad AP, Ferreira JP, Green JB, Rosenstock
J, Schnaidt S, Brueckmann M, Pocock SJ, Packer M, Anker SD., EMPEROR-Preserved Trial
Committees and Investigators. Empagliflozin for Heart Failure With Preserved Left
Ventricular Ejection Fraction With and Without Diabetes. Circulation. 2022 Aug
;146(9):676-686.
Haas B, Eckstein N, Pfeifer V, Mayer P, Hass MD (2014). "Efficacy, safety and regulatory
status of SGLT2 inhibitors: focus on canagliflozin". Nutrition & Diabetes. 4 (11): e143.
Johnston R, Uthman O, Cummins E, et al. Canagliflozin, dapagliflozin and empagliflozin
monotherapy for treating type 2 diabetes: systematic review and economic evaluation.
Southampton (UK): NIHR Journals Library; 2017 Jan. (Health Technology Assessment, No.
2.)
Wright EM. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360. 2021 Sep
;2(12):2027-2037. doi: 10.34067/KID.0002772021. PMID: 35419546; PMCID:
PMC8986039.
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and
mortality in type 2 diabetes. N Engl J Med. 2015;373:
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events
in type 2 diabetes. N Engl J Med. 2017;377:644–657.
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2
diabetes. N Engl J Med. 2019;380:347–357.
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes
and nephropathy. N Engl J Med. 2019;380
Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in
type 2 diabetes. N Engl J Med. 2020;383:1425–1435.
McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with
cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA
Cardiol. 2021;6:148–158.
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with
reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials.
Lancet. 2020;396:819–829.
Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent
worsening heart failure. N Engl J Med. 2021;384:117–128.
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved
ejection fraction. N Engl J Med. 2021;385:1451–1461.
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the
management of heart failure: a report of the American College of Cardiology/American Heart
Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022; 145(18)
Kasprzak JD, Gorczyca-Głowacka I, Sobczak-Kaleta M, Barylski M, Drożdż J, Filipiak KJ,
Kapłon-Cieślicka A, Lelonek M, Mamcarz A, Ochijewicz D, Ryś-Czaporowska A, Starzyk K,
Szymański FM, Wełnicki M, Wożakowska-Kapłon B. Pharmacotherapy of heart failure A.D.
Expert opinion of Working Group on Cardiovascular Pharmacotherapy, Polish Cardiac
Society. Kardiol Pol. 2023;81(5):537-556.
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA 10-year follow-up of intensive
glucose control in type 2 diabetes. N Engl J Med 2008 359: 1577–1589
Packer M Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links
the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation
136: 1548–155
Wang Y, Meyer JW, Ashraf M, Shull GE Mice with a null mutation in the NHE1 Na+-H+
exchanger are resistant to cardiac ischemia-reperfusion injury. Circ Res 2003 93: 776–782
Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S Activation of Na+/H+
exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart
failure. Circ Res 2008 103: 891–899
Avogaro A, Fadini GP, Del Prato S Reinterpreting cardiorenal protection of renal sodium-
glucose cotransporter 2 inhibitors via cellular life history programming. Diabetes Care 2020
: 501–507
Packer M Autophagy stimulation and intracellular sodium reduction as mediators of the
cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail 2020 22:
–628
Packer M SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular
reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their
mechanism of action. Diabetes Care 2020 43: 508–511
Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong
YH, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by
blocking p53-mediated myocardin transcription. Nat Commun 2018 9: 29
Santulli G Cardioprotective effects of autophagy: eat your heart out, heart failure!. Sci Transl
Med 201
Sciarretta S, Yee D, Nagarajan N, Bianchi F, Saito T, Valenti V, Tong M, Del Re DP,
Vecchione C, Schirone L, et al. Trehalose-induced activation of autophagy improves cardiac
remodeling after myocardial infarction. J Am Coll Cardiol 2018 71: 1999–2010
Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011 Mar;(120):S1-
Zelniker TA, Braunwald E. Mechanisms of Cardiorenal Effects of Sodium-Glucose
Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 Feb
;75(4):422-434.
Gupta R, Alcantara R, Popli T, Mahajan S, Tariq U, Dusaj RS, Malik AH. Myopathy
Associated With Statins and SGLT2 - A Review of Literature. Curr Probl Cardiol. 2021
Halimi S, Vergès B. Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab. 2014
Mistry S, Eschler DC. Euglycemic Diabetic Ketoacidosis Caused by SGLT2 Inhibitors and a
Ketogenic Diet: A Case Series and Review of Literature. AACE Clin Case Rep. 2020 Dec
Yang Y, Pan H, Wang B, Chen S, Zhu H. Efficacy and Safety of SGLT2 Inhibitors in Patients
with Type 1 Diabetes: A Meta-analysis of Randomized Controlled Trials. Chin Med Sci
Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and
glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on
combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase
study. Lancet Diabetes Endocrinol. 2016 Mar;4(3):211-220. doi: 10.1016/S2213-
(15)00417-9. Epub 2015 Nov 27. Erratum in: Lancet Diabetes Endocrinol. 2016
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for
the year 2000 and projections for 2030. Diabetes Care. 2004 May;27(5):1047-53.
Liu JJ, Lee T, DeFronzo RA. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose
reabsorption in humans?Diabetes. 2012; 61:2199–2204.
Bakris GL, Fonseca VA, Sharma K, Wright EM. Renal sodium-glucose transport: role in
diabetes mellitus and potential clinical implications.Kidney Int. 2009; 75:1272–1277.
Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC; EMPA-REG
RENAL trial investigators. Efficacy and safety of empagliflozin added to existing antidiabetes
treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-
blind, placebo-controlled trial.Lancet Diabetes Endocrinol. 2014; 2:369–384.
Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, Figueroa K, Wajs E, Usiskin K,
Meininger G. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic
kidney disease.Diabetes Obes Metab. 2013; 15:463–473.
Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC; EMPA-REG H2H-
SU trial investigators. Comparison of empagliflozin and glimepiride as add-on to metformin
in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind,
phase 3 trial.Lancet Diabetes Endocrinol. 2014; 2:691–700.
Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, Broedl UC; EMPA-REG
MDI Trial Investigators. Improved glucose control with weight loss, lower insulin doses, and
no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of
insulin in obese inadequately controlled type 2 diabetes.Diabetes Care. 2014; 37:1815–1823.
Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K, Desai M, Shaw W,
Capuano G, Alba M, Jiang J, Vercruysse F, Meininger G, Matthews D; CANVAS Trial
Collaborative Group. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose
cotransporter 2, when used in conjunction with insulin therapy in patients with type 2
diabetes.Diabetes Care. 2015; 38:403–411.
Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, Parikh S; Dapagliflozin 006
Study Group. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus
receiving high doses of insulin: a randomized trial.Ann Intern Med. 2012; 156:405–415.
Wright EM, Hirayama BA, Loo DF et al (2007) Active sugar transport in health and disease. J
Intern Med 261(1):32–43.
Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW (2018) Why do
SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation
hypothesis. Diabetes Obes Metab 20(3):479–487.
Staels B (2017) Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors:
Potential Mechanisms. Am J Med 130(6s):S30–S39.
Mordi NA, Mordi IR, Singh JS, McCrimmon RJ, Struthers AD, Lang CC et al (2020) Renal
and Cardiovascular Effects of SGLT2 Inhibition in Combination with Loop Diuretics in
Patients with Type 2 Diabetes and Chronic Heart Failure: The RECEDE-CHF Trial.
Circulation.
Ronco C, Haapio M, House AA, Anavekar N, Bellomo R et al (2008) Cardiorenal syndrome.
J Am Coll Cardiol 52(19):1527–1539.
Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S et al (2006) Renal
function as a predictor of outcome in a broad spectrum of patients with heart failure.
Circulation 113(5):671–678.
Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J et al
(2007) High prevalence of renal dysfunction and its impact on outcome in 118,465 patients
hospitalized with acute decompensated heart failure: a report from the ADHERE database. J
Card Fail 13(6):422–430.
Cherney DZ, Perkins BA (2014) Sodium-glucose cotransporter 2 inhibition in type 1 diabetes:
simultaneous glucose lowering and renal protection? Can J Diabetes 38(5):356–363.
Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R et al (2016) SGLT2 Inhibitors and the
Diabetic Kidney. Diabetes Care 39(Suppl 2):S165–S171.
Cherney DZI, Heerspink HJL, Frederich R, Maldonado M, Liu J, Pong A et al (2020) Effects
of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two
randomised controlled trials. Diabetologia 63(6):1128–1140.
Dearborn J.L., Qiao Y., Suri M.F.K., Liu L., Mosley T.H., Alonso A., Knopman D.S.
Intracranial atherosclerosis and dementia The Atherosclerosis Risk in Communities (ARIC)
Study. Am. Acad. Neurol. 2017;88:1556–1563.
Iadecola C. Revisiting atherosclerosis and dementia. Nat. Neurosci. 2020;23:691–692. doi:
1038/s41593-020-0626-6.
Hierro-bujalance C., Infante-garcia C., Marco A., Herrera M., Carranza-naval M.J., Suarez J.,
Alves-martinez P., Lubian-lopez S., Garcia-alloza M. Empagliflozin reduces vascular damage
and cognitive impairment in a mixed murine model of Alzheimer’ s disease and type 2
diabetes. Alzheimer’s Res. Ther. 2020;4:1–13.
Tahara A., Takasu T., Yokono M., Imamura M., Kurosaki E. Characterization and
comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics,
pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci. 2016;130:159–169. doi:
1016/j.jphs.2016.02.003.
Shah K., DeSilva S., Abbruscato T. The role of glucose transporters in brain disease: Diabetes
and Alzheimer’s disease. Int. J. Mol. Sci. 2012;13:12629–12655.
Poppe R., Karbach U., Gambaryan S., Wiesinger H., Lutzenburg M., Kraemer M., Witte
O.W., Koepsell H. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J.
Neurochem. 1997;69:84–94. doi: 10.1046/j.1471-4159.1997.69010084.x.
Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. Eur. J.
Physiol. 2020;472:1299–1343. doi: 10.1007/s00424-020-02441-x.
Enerson B.E., Drewes L.R. The rat blood-brain barrier transcriptome. J. Cereb. Blood Flow
Metab. 2006;26:959–973. doi: 10.1038/sj.jcbfm.9600249.
Nguyen T., Wen S., Gong M., Yuan X., Xu D., Wang C., Jin J., Zhou L. Dapagliflozin
activates neurons in the central nervous system and regulates cardiovascular activity by
inhibiting sglt-2 in mice. Diabetes, Metab. Syndr. Obes. Targets Ther. 2020;13:2781–2799.
doi: 10.2147/DMSO.S258593.
Gaur A., Pal G.K., Ananthanarayanan P.H., Pal P. Role of Ventromedial hypothalamus in
high fat diet induced obesity in male rats: Association with lipid profile, thyroid profile and
insulin resistance. Ann. Neurosci. 2014;21:104–107. doi: 10.5214/ans.0972.7531.210306.
Oerter S., Förster C., Bohnert M. Validation of sodium/glucose cotransporter proteins in
human brain as a potential marker for temporal narrowing of the trauma formation. Int. J.
Legal Med. 2019;133:1107–1114. doi: 10.1007/s00414-018-1893-6.
Chiba Y., Sugiyama Y., Nishi N., Nonaka W., Murakami R., Ueno M. Sodium/glucose
cotransporter 2 is expressed in choroid plexus epithelial cells and ependymal cells in human
and mouse brains. Neuropathology. 2020;40:482–491. doi: 10.1111/neup.12665.
Pearson A., Ajoy R., Crynen G., Reed J.M., Algamal M., Mullan M., Purohit D., Crawford F.,
Ojo J.O. Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral
ventricles of nonagenarians and Alzheimer disease patients. BMC Neurol. 2020;20:1–20. doi:
1186/s12883-020-01849-3.
Erdogan M.A., Yusuf D., Christy J., Solmaz V., Erdogan A., Taskiran E., Erbas O. Highly
selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced
murine model of epilepsy. BMC Neurol. 2018;18:1–8. doi: 10.1186/s12883-018-1086-4.
Sebastiani A., Greve F., Gölz C., Förster C.Y., Koepsell H., Thal S.C. RS1 (Rsc1A1)
deficiency limits cerebral SGLT1 expression and delays brain damage after experimental
traumatic brain injury. J. Neurochem. 2018;147:190–203. doi: 10.1111/jnc.14551.
Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.;
Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes
in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357.
Singh, M.; Kumar, A. Risks Associated with SGLT2 Inhibitors: An Overview. Curr. Drug
Saf. 2018, 13, 84–91.
Dave, C.V.; Schneeweiss, S.; Patorno, E. Comparative risk of genital infections associated
with sodium-glucose co-transporter-2 inhibitors. Diabetes Obes. Metab. 2019, 21, 434–438.
Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.;
Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium–Glucose Cotransporter 2 Inhibitors for
Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2013, 159,
–274.
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.;
Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and
Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128.
Chang, H.Y.; Singh, S.; Mansour, O.; Baksh, S.; Alexander, G.C. Association Between
Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among
Patients with Type 2 Diabetes. JAMA Intern. Med. 2018, 178, 1190–1198.
Matthews, D.R.; Li, Q.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Desai, M.;
Hiatt, W.R.; Nehler, M.; Fabbrini, E.; et al. Effects of canagliflozin on amputation risk in type
diabetes: The CANVAS Program. Diabetologia 2019.
Peters, A.L.; Buschur, E.O.; Buse, J.B.; Cohan, P.; Diner, J.C.; Hirsch, I.B. Euglycemic
Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium-Glucose
Cotransporter 2 Inhibition. Diabetes Care 2015, 38, 1687–1693.
Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.;
Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2
diabetic patients. J. Clin. Investig. 2014, 124, 499–508.
Merovci, A.; Solis-Herrera, C.; Daniele, G.; Eldor, R.; Fiorentino, T.V.; Tripathy, D.; Xiong,
J.; Perez, Z.; Norton, L.; Abdul-Ghani, M.A.; et al. Dapagliflozin improves muscle insulin
sensitivity but enhances endogenous glucose production. J. Clin. Investig. 2014, 124,
–514.
Keller, U.; Schnell, H.; Sonnenberg, G.E.; Gerber, P.P.; Stauffacher, W. Role of glucagon in
enhancing ketone body production in ketotic diabetic man. Diabetes 1983, 32, 387–391.
Hahn, K.; Ejaz, A.A.; Kanbay, M.; Lanaspa, M.A.; Johnson, R.J. Acute kidney injury from
SGLT2 inhibitors: Potential mechanisms. Nat. Rev. Nephrol. 2016, 12, 711–712.
Hahn, K.; Kanbay, M.; Lanaspa, M.A.; Johnson, R.J.; Ejaz, A.A. Serum uric acid and acute
kidney injury: A mini review. J. Adv. Res. 2017, 8, 529–536.
Andreucci, M.; Faga, T.; Serra, R.; De Sarro, G.; Michael, A. Update on the renal toxicity of
iodinated contrast drugs used in clinical medicine. Drug Healthc. Patient Saf. 2017, 9, 25–37.
Rivosecchi, R.M.; Kellum, J.A.; Dasta, J.F.; Armahizer, M.J.; Bolesta, S.; Buckley, M.S.;
Dzierba, A.L.; Frazee, E.N.; Johnson, H.J.; Kim, C.; et al. Drug Class Combination-
Associated Acute Kidney Injury. Ann. Pharm.2016, 50, 953–972.
Gomez-Peralta, F.; Abreu, C.; Lecube, A.; Bellido, D.; Soto, A.; Morales, C.; Brito-Sanfiel,
M.; Umpierrez, G. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes.
Diabetes 2017, 8, 953–962, Erratum in Diabetes Ther. 2017, 8, 963–965.
Bersoff-Matcha, S.J.; Chamberlain, C.; Cao, C.; Kortepeter, C.; Chong, W.H. Fournier
Gangrene Associated with Sodium-Glucose Cotransporter-2 Inhibitors: A Review of
Spontaneous Postmarketing Cases. Ann. Intern. Med. 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Marta Bogowska, Aleksandra Berner, Klaudia Marczyk, Karolina Matyja, Anna Olszewska, Maciej Pękała, Paulina Polak, Monika Polaszek, Karina Stelmaszak, Katarzyna Stencel
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 181
Number of citations: 0