Review: proteins c-Myc and Myc-nick as potential targets for the melignant melanoma treatment
DOI:
https://doi.org/10.12775/JEHS.2023.42.01.009Keywords
c-Myc, Myc-nick, autophagy, apoptosis, melanomaAbstract
Malignant melanoma is the most aggressive and life-threatening skin cancer with increasing incidences over the past decades. Despite accounting for only 4 % of all skin cancers, melanoma confers 80 % of skin cancer induced death. The underlying cause of melanoma progression and metastasis is poorly understood.
Myc is a very strong proto-oncogene and it is very upregulated in many types of cancers. c-Myc protein is a transcription factor that activates expression of many genes. It drives cell proliferation, plays a very important role in regulating cell growth, apoptosis and differentiation. High c-Myc expression is associated with tumor metastasis and poor prognosis in human melanoma.
Full-length c-Myc is converted into Myc-nick by calcium-dependent on cytosolic proteases that are members of the calpain family. In connection with the key role of the cytoplasmic protein Myc-nick in the autophagy activativation, increasing the resistance to chemotherapy and overall survival of tumor cells, it can be a target for treatment tumors under the conditions of c-Myc overexpression. That fact that the expression of Myc-nick increases the survival of cells after UV radiation can indicate the key role of the Myc-nick in tumorogenesis of melanoma cells.
References
Grant M, Fischer YN, Vashisht G [and others]. Metabolic Strategies of Melanoma Cells: Mechanisms, Interactions with the Tumor Microenvironment, and Therapeutic Implications. Cell Melanoma Res. 2018;31(1):11-30. doi: 10.1111/pcmr.12661.
Galluzzi L, Vitale I, Aaronson SA [and others]. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25(3):486-541. doi: 10.1038/s41418-017-0012-4.
Kietzmann T. Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. Int J Mol Sci. 2019 May; 20(9): 2347. doi: 10.3390/ijms20092347.
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis. 2016; 7(2):180-200. doi: 10.14336/AD.2015.0929.
Guerrab A, Bamdad M, Kwiatkowski F [and others]. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget. 2016;7(45):73618-37. doi: 10.18632/oncotarget.12037.
Ginsburg GS, Phillips KA. Precision Medicine: From Science to Value. Health Aff (Millwood). 2018;37(5):694-701. doi: 10.1377/hlthaff.2017.1624.
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel). 2019;10(3):244. doi: 10.3390/genes10030244.
Lin X, Sun R, Zhao X [and others]. C-myc overexpression drives melanoma metastasis by promoying vasculogenic mimicry via c-myc/snail/Bax signaling. J Mol Med. 2017; 95(1): 53-67. doi: 10.7150/thno.18835.
Zhang Y, Li Z, Hao Q [and others]. The Cdk2-c-Myc-miR-571 Axis Regulates DNA Replication and Genomic Stability by Targeting Geminin. Cancer Res. 2019; 79(19): 4896-4910. doi: 10.1158/0008-5472.
Gershenwald JE, Scolyer RA, Kenneth R [and others]. Melanoma Staging: Evidence-Based Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J Clin. 2017;67(6):472-492. doi: 10.3322/caac.21409.
Hahn D, Hodson EM, Hamiwka LA [and others]. Target of rapamycin inhibitors (TOR‐I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev. 2019;2019(12):CD004290. doi: 10.1002/14651858.
Leu WJ, Swain SP, Chan SH [and others]. Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: The role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways. Oncotarget 2016;7:76995–77009. doi: 10.18632/oncotarget.12765.
Cianfanelli V, Fuoco C, Lorente M [and others]. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol. 2015;17:20-30. doi: 10.1038/ncb3072.
Ding C, Luo J., Fan X [and others]. Elevated Gab2 induces tumor growth and angiogenesis in colorectal cancer through upregulating VEGF levels. J Exp Clin Cancer Res. 2017;36:56. doi: 10.1186/s13046-017-0524-2.
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel). 2017;9(5):52. doi: 10.3390/cancers9050052.
Djavaheri-Mergny M, Giuriato S, Tschan MP, Humbert M. Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells. 2019;8(2):103. doi: 10.3390/cells8020103.
Chen Y, Henson ES, Xiao W [and others]. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy. 2016;12(6):1029-1046. doi: 10.1080/15548627.2016.1164357.
Du L, Anderson A, Nguyen K [and others]. JNK2 Is Required for the Tumorigenic Properties of Melanoma Cells. ACS Chem Biol. 2019;14(7):1426-1435. doi: 10.1021/acschembio.9b00083.
Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019;38(13): 2223-2240. doi: 10.1038/s41388-018-0582-8.
Sinkala M, Nkhoma P, Mulder N, Martin DP. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun Biol. 2021;4:9. doi: 10.1038/s42003-020-01552-6.
Kacsinta AD, Dowdy SF. Current views on inducing synthetic lethal RNAi responses in the treatment of cancer. Expert Opin Biol Ther 2016;16:161-72. doi: 10.1089/nat.2017.0686.
Ngan H-L, Liu Y, Fong AY [and others]. MAPK pathway mutations in head and neck cancer affect immune microenvironments and ErbB3 signaling. Life Sci Alliance. 2020;3(6):e201900545. doi: 10.26508/lsa.201900545.
Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol. 2017;10:67. doi: 10.1186/s13045-017-0436-9.
Anderson S, Poudel KR, Roh-Johnson M [and others]. MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation. Proc Natl Acad Sci U S A. 2016;113 (37):5481-90. doi: 10.1073/pnas.1610994113.
Popay TM, Wang J, Adams CM [and others]. MYC regulates ribosome biogenesis and mitochondrial gene expression programs through its interaction with host cell factor–1. eLife. 2021;10:e60191. doi: 10.7554/eLife.60191.
Xiao Z-D, Han L, Lee H [and others]. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun. 2017;8:783. doi: 10.1038/s41467-017-00902-z.
Venkateswaran N, Conacci-Sorrell M. MYC leads the way. Small GTPases. 2020;11(2):86–94. doi: 10.1080/21541248.2017.1364821.
Mehrbod P, Ande SR, Alizadeh J [and others]. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence. 2019;10(1):376–413. doi: 10.1080/21505594.2019.1605803.
Sammons MA, Nguyen T-AT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation Nucleic Acids Res. 2020;48(16):8848-8869. doi: 10.1093/nar/gkaa666.
Zhang P, Zheng Z, Ling L [and others]. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway. Autophagy. 2017;13(7):1093-1112. doi: 10.1080/15548627.2017.1319039.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. Maryniuk, G. Stepanov, K. Oleynik, I. Selyvanska, L. Tereshchenko, Y. Dubna
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 319
Number of citations: 0