Future of cardiovascular diagnosis with the support of artificial intelligence
DOI:
https://doi.org/10.12775/JEHS.2023.44.01.001Keywords
artificial intelligence, deep learning, cardiology, machine learning, echocardiographyAbstract
Introduction: Term Artificial inteligence was used for the first time by John McCarthy in 1956, from that time we can observe its great development, espiecially in the past decade. Nowadays, Artificial inteligence present a great influence in every aspect of human life, also health care. In times of digitalizaton, great data bases it can enable an improvment in all aspects of healthcare system such as prevention, screening and treatment of diseases.
Purpose:The main purpose of the work was to present the basic aspects related to artificial intelligence. Another important aspect of the article was to indicate the possibilities related to their use in cardiology to improve the effectiveness of doctors and make medical treatment more detailed and personalized, but also to clarify terms related do AI, such as machine learning or deep learning.
Materials and methods: For the purpose of writing this article, the available literature was reviewed. Using keywords such as artificial inteligence, cardiology, machine learning, echocardiography, deep learning, data bases PubMed we ware searching for various clinical trials, meta analysis and randomized controlled trials from past 5 years.
Results: According to the data published on the website of the World Health Organization (WHO), cardiovascular diseases remain the main cause of mortality worldwide. It is the reason of the great interest in its use in cardiology. Algorithms based on artificial intelligence are also used in electrocardiography. The use of artificial intelligence can improve the estimation of cardiovascular risk. Its use in the healing process is also being investigated.
Conclusion: Artificial intelligence is used in many fields, including medicine. Its use may have a positive impact on the quality of medical care. Artificial intelligence also has numerous limitations. Due to this, it is necessary to develop and improve artificial intelligence.
References
Nakamura T, Sasano T. Artificial intelligence and cardiology: Current status and perspective. J Cardiol. 2022 Mar;79(3):326-333. doi: 10.1016/j.jjcc.2021.11.017. Epub 2021 Dec 9. PMID: 34895982.
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019 Apr;28(2):73-81. doi: 10.1080/13645706.2019.1575882. Epub 2019 Feb 27. PMID: 30810430.
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Saeed A, Kampangkaew J, Nambi V. Prevention of Cardiovascular Disease in Women. Methodist Debakey Cardiovasc J. 2017 Oct-Dec;13(4):185-192. doi: 10.14797/mdcj-13-4-185. PMID: 29744010; PMCID: PMC5935277.
Teo KK, Rafiq T. Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can J Cardiol. 2021 May;37(5):733-743. doi: 10.1016/j.cjca.2021.02.009. Epub 2021 Feb 19. PMID: 33610690.
[file:///C:/Users/user/Downloads/WHO-EURO-2021-1204-40953-58211-pol.pdf
Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chareonthaitawee P, Jouni H, Kapa S, Lerman A, Luong C, Medina-Inojosa JR, Noseworthy PA, Pellikka PA, Redfield MM, Roger VL, Sandhu GS, Senecal C, Friedman PA. Artificial Intelligence in Cardiology: Present and Future. Mayo Clin Proc. 2020 May;95(5):1015-1039. doi: 10.1016/j.mayocp.2020.01.038. PMID: 32370835.
Asselbergs FW, Fraser AG. Artificial intelligence in cardiology: the debate continues. Eur Heart J Digit Health. 2021 Oct 18;2(4):721-726. doi: 10.1093/ehjdh/ztab090. PMID: 36713089; PMCID: PMC9708032.
Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521. PMID: 29880128.
Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019 Feb;103(2):167-175. doi: 10.1136/bjophthalmol-2018-313173. Epub 2018 Oct 25. PMID: 30361278; PMCID: PMC6362807.
Pál Maurovich-Horvat, Current trends in the use of machine learning for diagnostics and/or risk stratification in cardiovascular disease, Cardiovascular Research, Volume 117, Issue 5, 1 May 2021, Pages e67–e69, https://doi.org/10.1093/cvr/cvab059
Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol. 2016 Nov 29;68(21):2287-2295. doi: 10.1016/j.jacc.2016.08.062. PMID: 27884247.
Sanchez-Martinez S, Duchateau N, Erdei T, Kunszt G, Aakhus S, Degiovanni A, Marino P, Carluccio E, Piella G, Fraser AG, Bijnens BH. Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging. 2018 Apr;11(4):e007138. doi: 10.1161/CIRCIMAGING.117.007138. PMID: 29661795.
Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ Cardiovasc Imaging. 2016 Jun;9(6):e004330. doi: 10.1161/CIRCIMAGING.115.004330. PMID: 27266599; PMCID: PMC5321667.
Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis. Radiol Med. 2020 Nov;125(11):1040-1055. doi: 10.1007/s11547-020-01282-z. Epub 2020 Sep 16. PMID: 32939626.
Busse A, Rajagopal R, Yücel S, Beller E, Öner A, Streckenbach F, Cantré D, Ince H, Weber MA, Meinel FG. Cardiac MRI-Update 2020. Radiologe. 2020 Nov;60(Suppl 1):33-40. English. doi: 10.1007/s00117-020-00687-1. PMID: 32385547.
Larroza A, Materka A, López-Lereu MP, Monmeneu JV, Bodí V, Moratal D. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. Eur J Radiol. 2017 Jul;92:78-83. doi: 10.1016/j.ejrad.2017.04.024. Epub 2017 May 1. PMID: 28624024.
Dawes TJW, de Marvao A, Shi W, Fletcher T, Watson GMJ, Wharton J, Rhodes CJ, Howard LSGE, Gibbs JSR, Rueckert D, Cook SA, Wilkins MR, O'Regan DP. Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology. 2017 May;283(2):381-390. doi: 10.1148/radiol.2016161315. Epub 2017 Jan 16. PMID: 28092203; PMCID: PMC5398374.
Dipti Itchhaporia, Artificial intelligence in cardiology, Trends in Cardiovascular Medicine, Volume 32, Issue 1, 2022, Pages 34-41, ISSN 1050-1738, https://doi.org/10.1016/j.tcm.2020.11.007.
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram. Eur Heart J. 2021 Dec 7;42(46):4717-4730. doi: 10.1093/eurheartj/ehab649. PMID: 34534279; PMCID: PMC8500024.
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7. PMID: 30617318.
Jason Gordon, Max Norman, Michael Hurst, Thomas Mason, Carissa Dickerson, Belinda Sandler, Kevin G. Pollock, Usman Farooqui, Lara Groves, Carmen Tsang, David Clifton, Ameet Bakhai, Nathan R. Hill, Using machine learning to predict anticoagulation control in atrial fibrillation: A UK Clinical Practice Research Datalink study, Informatics in Medicine Unlocked, Volume 25, 2021, 100688, ISSN 2352-9148, https://doi.org/10.1016/j.imu.2021.100688.
Zhang F, Liu Y, Ma W, Zhao S, Chen J, Gu Z. Nonlinear Machine Learning in Warfarin Dose Prediction: Insights from Contemporary Modelling Studies. J Pers Med. 2022 Apr 29;12(5):717. doi: 10.3390/jpm12050717. PMID: 35629140; PMCID: PMC9147332.
Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine Learning Outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc. 2018 Nov 20;7(22):e009476. doi: 10.1161/JAHA.118.009476. PMID: 30571498; PMCID: PMC6404456.
Commandeur F, Slomka PJ, Goeller M, Chen X, Cadet S, Razipour A, McElhinney P, Gransar H, Cantu S, Miller RJH, Rozanski A, Achenbach S, Tamarappoo BK, Berman DS, Dey D. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res. 2020 Dec 1;116(14):2216-2225. doi: 10.1093/cvr/cvz321. PMID: 31853543; PMCID: PMC7750990.
Otaki, Y., Miller, R.J.H. & Slomka, P.J. The application of artificial intelligence in nuclear cardiology. Ann Nucl Med 36, 111–122 (2022). https://doi.org/10.1007/s12149-021-01708-2
Watson X, D'Souza J, Cooper D, Markham R. Artificial intelligence in cardiology: fundamentals and applications. Intern Med J. 2022 Jun;52(6):912-920. doi: 10.1111/imj.15562. Epub 2022 May 31. PMID: 34613658.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Anna Rymarz, Ewa Grabowska, Laura Wojtala, Lena Musiał, Agnieszka Możdżyńska, Kamil Kapłon, Izabela Kamińska, Dominika Kojder, Małgorzata Sierpień
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 348
Number of citations: 0