Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Future of cardiovascular diagnosis with the support of artificial intelligence
  • Home
  • /
  • Future of cardiovascular diagnosis with the support of artificial intelligence
  1. Home /
  2. Archives /
  3. Vol. 44 No. 1 (2023) /
  4. Review Articles

Future of cardiovascular diagnosis with the support of artificial intelligence

Authors

  • Anna Rymarz Szpital MSWiA w Lublinie, ul. Grenadierów 3, 20-331 Lublin https://orcid.org/0000-0003-3387-1569
  • Ewa Grabowska Nowodworskie Centrum Medyczne ul. Miodowa 2, 05-100 Nowy Dwór Mazowiecki https://orcid.org/0000-0003-1426-5205
  • Laura Wojtala Uniwersytecki Szpital Kliniczny w Poznaniu, ul. Przybyszewskiego 49, 60-355 Poznań https://orcid.org/0000-0002-5715-2334
  • Lena Musiał Szpital Średzki Serca Jezusowego Sp. z o.o. ul. Żwirki i Wigury 10, 63-000 Środa Wielkopolska https://orcid.org/0000-0002-1998-6477
  • Agnieszka Możdżyńska Szpital Średzki Serca Jezusowego Sp. z o.o. ul. Żwirki i Wigury 10, 63-000 Środa Wielkopolska https://orcid.org/0000-0001-8590-0486
  • Kamil Kapłon Uniwersytecki Szpital Kliniczny w Poznaniu, ul. Przybyszewskiego 49, 60-355 Poznań https://orcid.org/0000-0002-8110-9352
  • Izabela Kamińska Szpital Czerniakowski sp. z o.o., ul. Stępińska 19/25, 00-739 Warszawa https://orcid.org/0000-0002-5766-2262
  • Dominika Kojder Samodzielny Publiczny Zakład Opieki Zdrowotnej w Przeworsku ul. Szpitalna 16 37-200 Przeworsk https://orcid.org/0000-0002-8915-4959
  • Małgorzata Sierpień 1 Wojskowy Szpital Kliniczny z Polikliniką SPZOZ, Al. Racławickie 23, 20-049 Lublin. https://orcid.org/0000-0002-0119-2775

DOI:

https://doi.org/10.12775/JEHS.2023.44.01.001

Keywords

artificial intelligence, deep learning, cardiology, machine learning, echocardiography

Abstract

Introduction: Term Artificial inteligence was used for the first time by John McCarthy in 1956, from that time we can observe its great development, espiecially in the past decade.  Nowadays, Artificial inteligence present a great influence in every aspect of human life, also health care. In times of digitalizaton, great data bases it can enable an improvment in all aspects of healthcare system such as prevention, screening and treatment of diseases.

Purpose:The main purpose of the work was to present the basic aspects related to artificial intelligence. Another important aspect of the article was to indicate the possibilities related to their use in cardiology to improve the effectiveness of doctors and make medical treatment more detailed and personalized, but also to clarify terms related do AI, such as machine learning or deep learning.

Materials and methods: For the purpose of writing this article, the available literature was reviewed. Using keywords such as artificial inteligence, cardiology, machine learning, echocardiography, deep learning, data bases PubMed we ware searching for various clinical trials, meta analysis and randomized controlled trials from past 5 years.

Results: According to the data published on the website of the World Health Organization (WHO), cardiovascular diseases remain the main cause of mortality worldwide.  It is the reason of the great interest in its use in cardiology. Algorithms based on artificial intelligence are also used in electrocardiography. The use of artificial intelligence can improve the estimation of cardiovascular risk. Its use in the healing process is also being investigated. 

Conclusion: Artificial intelligence is used in many fields, including medicine. Its use may have a positive impact on the quality of medical care. Artificial intelligence also has numerous limitations. Due to this, it is necessary to develop and improve artificial intelligence.

References

Nakamura T, Sasano T. Artificial intelligence and cardiology: Current status and perspective. J Cardiol. 2022 Mar;79(3):326-333. doi: 10.1016/j.jjcc.2021.11.017. Epub 2021 Dec 9. PMID: 34895982.

Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019 Apr;28(2):73-81. doi: 10.1080/13645706.2019.1575882. Epub 2019 Feb 27. PMID: 30810430.

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Saeed A, Kampangkaew J, Nambi V. Prevention of Cardiovascular Disease in Women. Methodist Debakey Cardiovasc J. 2017 Oct-Dec;13(4):185-192. doi: 10.14797/mdcj-13-4-185. PMID: 29744010; PMCID: PMC5935277.

Teo KK, Rafiq T. Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can J Cardiol. 2021 May;37(5):733-743. doi: 10.1016/j.cjca.2021.02.009. Epub 2021 Feb 19. PMID: 33610690.

[file:///C:/Users/user/Downloads/WHO-EURO-2021-1204-40953-58211-pol.pdf

Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chareonthaitawee P, Jouni H, Kapa S, Lerman A, Luong C, Medina-Inojosa JR, Noseworthy PA, Pellikka PA, Redfield MM, Roger VL, Sandhu GS, Senecal C, Friedman PA. Artificial Intelligence in Cardiology: Present and Future. Mayo Clin Proc. 2020 May;95(5):1015-1039. doi: 10.1016/j.mayocp.2020.01.038. PMID: 32370835.

Asselbergs FW, Fraser AG. Artificial intelligence in cardiology: the debate continues. Eur Heart J Digit Health. 2021 Oct 18;2(4):721-726. doi: 10.1093/ehjdh/ztab090. PMID: 36713089; PMCID: PMC9708032.

Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521. PMID: 29880128.

Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019 Feb;103(2):167-175. doi: 10.1136/bjophthalmol-2018-313173. Epub 2018 Oct 25. PMID: 30361278; PMCID: PMC6362807.

Pál Maurovich-Horvat, Current trends in the use of machine learning for diagnostics and/or risk stratification in cardiovascular disease, Cardiovascular Research, Volume 117, Issue 5, 1 May 2021, Pages e67–e69, https://doi.org/10.1093/cvr/cvab059

Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol. 2016 Nov 29;68(21):2287-2295. doi: 10.1016/j.jacc.2016.08.062. PMID: 27884247.

Sanchez-Martinez S, Duchateau N, Erdei T, Kunszt G, Aakhus S, Degiovanni A, Marino P, Carluccio E, Piella G, Fraser AG, Bijnens BH. Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging. 2018 Apr;11(4):e007138. doi: 10.1161/CIRCIMAGING.117.007138. PMID: 29661795.

Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ Cardiovasc Imaging. 2016 Jun;9(6):e004330. doi: 10.1161/CIRCIMAGING.115.004330. PMID: 27266599; PMCID: PMC5321667.

Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis. Radiol Med. 2020 Nov;125(11):1040-1055. doi: 10.1007/s11547-020-01282-z. Epub 2020 Sep 16. PMID: 32939626.

Busse A, Rajagopal R, Yücel S, Beller E, Öner A, Streckenbach F, Cantré D, Ince H, Weber MA, Meinel FG. Cardiac MRI-Update 2020. Radiologe. 2020 Nov;60(Suppl 1):33-40. English. doi: 10.1007/s00117-020-00687-1. PMID: 32385547.

Larroza A, Materka A, López-Lereu MP, Monmeneu JV, Bodí V, Moratal D. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. Eur J Radiol. 2017 Jul;92:78-83. doi: 10.1016/j.ejrad.2017.04.024. Epub 2017 May 1. PMID: 28624024.

Dawes TJW, de Marvao A, Shi W, Fletcher T, Watson GMJ, Wharton J, Rhodes CJ, Howard LSGE, Gibbs JSR, Rueckert D, Cook SA, Wilkins MR, O'Regan DP. Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology. 2017 May;283(2):381-390. doi: 10.1148/radiol.2016161315. Epub 2017 Jan 16. PMID: 28092203; PMCID: PMC5398374.

Dipti Itchhaporia, Artificial intelligence in cardiology, Trends in Cardiovascular Medicine, Volume 32, Issue 1, 2022, Pages 34-41, ISSN 1050-1738, https://doi.org/10.1016/j.tcm.2020.11.007.

Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram. Eur Heart J. 2021 Dec 7;42(46):4717-4730. doi: 10.1093/eurheartj/ehab649. PMID: 34534279; PMCID: PMC8500024.

Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7. PMID: 30617318.

Jason Gordon, Max Norman, Michael Hurst, Thomas Mason, Carissa Dickerson, Belinda Sandler, Kevin G. Pollock, Usman Farooqui, Lara Groves, Carmen Tsang, David Clifton, Ameet Bakhai, Nathan R. Hill, Using machine learning to predict anticoagulation control in atrial fibrillation: A UK Clinical Practice Research Datalink study, Informatics in Medicine Unlocked, Volume 25, 2021, 100688, ISSN 2352-9148, https://doi.org/10.1016/j.imu.2021.100688.

Zhang F, Liu Y, Ma W, Zhao S, Chen J, Gu Z. Nonlinear Machine Learning in Warfarin Dose Prediction: Insights from Contemporary Modelling Studies. J Pers Med. 2022 Apr 29;12(5):717. doi: 10.3390/jpm12050717. PMID: 35629140; PMCID: PMC9147332.

Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine Learning Outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc. 2018 Nov 20;7(22):e009476. doi: 10.1161/JAHA.118.009476. PMID: 30571498; PMCID: PMC6404456.

Commandeur F, Slomka PJ, Goeller M, Chen X, Cadet S, Razipour A, McElhinney P, Gransar H, Cantu S, Miller RJH, Rozanski A, Achenbach S, Tamarappoo BK, Berman DS, Dey D. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res. 2020 Dec 1;116(14):2216-2225. doi: 10.1093/cvr/cvz321. PMID: 31853543; PMCID: PMC7750990.

Otaki, Y., Miller, R.J.H. & Slomka, P.J. The application of artificial intelligence in nuclear cardiology. Ann Nucl Med 36, 111–122 (2022). https://doi.org/10.1007/s12149-021-01708-2

Watson X, D'Souza J, Cooper D, Markham R. Artificial intelligence in cardiology: fundamentals and applications. Intern Med J. 2022 Jun;52(6):912-920. doi: 10.1111/imj.15562. Epub 2022 May 31. PMID: 34613658.

Downloads

  • PDF

Published

2023-08-18

How to Cite

1.
RYMARZ, Anna, GRABOWSKA, Ewa, WOJTALA, Laura, MUSIAŁ, Lena, MOŻDŻYŃSKA, Agnieszka, KAPŁON, Kamil, KAMIŃSKA, Izabela, KOJDER, Dominika and SIERPIEŃ, Małgorzata. Future of cardiovascular diagnosis with the support of artificial intelligence. Journal of Education, Health and Sport. Online. 18 August 2023. Vol. 44, no. 1, pp. 11-22. [Accessed 29 May 2025]. DOI 10.12775/JEHS.2023.44.01.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 44 No. 1 (2023)

Section

Review Articles

License

Copyright (c) 2023 Anna Rymarz, Ewa Grabowska, Laura Wojtala, Lena Musiał, Agnieszka Możdżyńska, Kamil Kapłon, Izabela Kamińska, Dominika Kojder, Małgorzata Sierpień

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 470
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

artificial intelligence, deep learning, cardiology, machine learning, echocardiography
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop